Skip to main content
Log in

A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A density functional theory study is carried out to investigate the geometries and electronic structure of pristine and carbon-doped (8, 0) single-walled boron nitride nanotubes (BNNTs). In order to understand the effect of impurities or doping on (8, 0) single-walled BNNT, we simulated C-doping in six different ways. Geometry optimizations reveal that in the considered models, B–N bond lengths are not significantly influenced by C-doping. Based on the quantum theory of atoms in molecules analysis, charge density accumulation for axial B–N bond critical points (BCPs) of pristine BNNT is slightly larger than zigzag ones. However, due to C-doping at the B- or N-tips, the evaluated electron density tends to decrease slightly at both axial and zigzag B–N BCPs. Besides, results indicate that influence of C-doping on properties of the (8, 0) BNNT could be also detected by values of chemical shielding isotropy (σ iso) and anisotropy (Δσ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng 70:92–111

    Article  Google Scholar 

  2. Akdim B, Pachter R, Duan X, Adams WW (2003) Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Phys Rev B 67:245404

    Article  Google Scholar 

  3. Won CY, Aluru NR (2008) Water phase transition induced by a Stone–Wales defect in a boron nitride nanotube. J Am Chem Soc 130:13649–13652

    Article  CAS  Google Scholar 

  4. Han WQ, Zettl A (2003) Functionalized boron nitride nanotubes with a stannic oxide coating: a novel chemical route to full coverage. J Am Chem Soc 125:2062–2063

    Article  CAS  Google Scholar 

  5. Xie SY, Wang W, Fernando KAS, Wang X, Lin Y, Sun YP (2005) Solubilization of boron nitride nanotubes. Chem Commun 29:3670–3672

    Article  Google Scholar 

  6. Mpourmpakis G, Froudakis GE (2007) Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage?: an ab initio theoretical study. Catal Today 120:341–345

    Article  CAS  Google Scholar 

  7. Schmidt TM, Baierle RJ, Piquini P, Fazzio A (2003) Theoretical study of native defects in BN nanotubes. Phys Rev B 67:113407

    Article  Google Scholar 

  8. Beheshtian J, Behzadi H, Esrafili MD, Shirvani BB, Hadipour NL (2011) A computational study of water adsorption on boron nitride nanotube. Struct Chem 21:903–908

    Article  Google Scholar 

  9. Chropra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967

    Article  Google Scholar 

  10. Goldberg D, Bando Y, Han W, Kurashima K, Sato T (1999) Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem Phys Lett 308:337–342

    Article  Google Scholar 

  11. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  12. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335–340

    Article  CAS  Google Scholar 

  13. Hamada N, Sawada S, Oshiyama A (1992) New one-dimensional conductors: graphitic microtubules. Phys Rev Lett 68:1579–1581

    Article  CAS  Google Scholar 

  14. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  15. Radosavljevic M, Appenzeller J, Derycke V, Martel R, Avouris P, Loiseau A, Cochon JL, Pigache D (2003) Electrical properties and transport in boron nitride nanotubes. Appl Phys Lett 82:4131–4133

    Article  CAS  Google Scholar 

  16. Tang C, Bando Y, Huang Y, Yue S, Gu C, Xu F, Golberg D (2005) Fluorination and electrical conductivity of BN nanotubes. J Am Chem Soc 127:6552–6553

    Article  CAS  Google Scholar 

  17. Wu RQ, Liu L, Peng GW, Feng YP (2005) Magnetism in BN nanotubes induced by carbon doping. Appl Phys Lett 86:122510–122512

    Article  Google Scholar 

  18. Baierle RJ, Piquini P, Schmidt TM, Fazzio A (2006) Hydrogen adsorption on carbon-doped boron nitride nanotube. J Phys Chem B 110:21184–21188

    Article  CAS  Google Scholar 

  19. Jhi SH, Kwon YK (2004) Hydrogen adsorption on boron nitride nanotubes: a path to room-temperature hydrogen storage. Phys Rev B 69:245407–245410

    Article  Google Scholar 

  20. Venkataramanan NS, Belosludov RV, Sahara R, Mizuseki H, Kawazoe Y (2010) Theoretical investigation on the alkali–metal doped BN fullerene as a material for hydrogen storage. Chem Phys 377:54–59

    Article  CAS  Google Scholar 

  21. Durgun E, Jang YR, Ciraci S (2007) Hydrogen storage capacity of Tidoped boron–nitride and B/Be-substituted carbon nanotubes. Phys Rev B 76:073413–073414

    Article  Google Scholar 

  22. Cho JH, Yang SJ, Lee K, Park CR (2011) Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and grapheme. Int J Hydrogen Energy 36:12286–12295

    Article  CAS  Google Scholar 

  23. Pokropivnyi VV (2002) Powder Metallurgy Metal Ceram. 41:123–135

    Article  CAS  Google Scholar 

  24. Liu J, Czrew R, Carroll DL (2005) Large-scale synthesis of highly aligned nitrogen doped carbon nanotubes by injection chemical vapor deposition methods. J Mater Res 20:538–543

    Article  CAS  Google Scholar 

  25. Terrones M, Romo-Herrera JM, Cruz-Silva E, López-Urías F, Munoz-Sandoval E, Velázquez-Salazar JJ, Terrones H, Bando Y, Golberg D (2007) Mater Today 53:30–38

    Article  Google Scholar 

  26. Zhao JX, Tian Y, Dai BO (2005) A theoretical study on the conductivity of carbon doped BNNT. J Chin Chem Soc 52:395–398

    CAS  Google Scholar 

  27. Kahaly MU, Waghmare UV (2008) Contrast in the electronic and magnetic properties of doped carbon and boron nitride nanotubes: a first-principles study. J Phys Chem C 112:3464–3472

    Article  CAS  Google Scholar 

  28. Mirzaei M, Nouri A (2010) The Al-doped BN nanotubes: a DFT study. J Mol Struct: THEOCHEM 942:83–87

    Article  CAS  Google Scholar 

  29. Mirzaei M, Hadipour NL, Abolhassani MA (2007) Influence of C-doping on the B-11 and N-14 quadrupole coupling constants in boron-nitride nanotubes: a DFT study. Z Naturforsch 62a:56–60

    Google Scholar 

  30. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York

    Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian Inc., Pittsburgh PA

  32. Becke AD (1988) Density-functional exchange–energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  34. Zhao J, Ding Y (2009) The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study. Nanotechnology 20:085704–085709

    Article  Google Scholar 

  35. Biegler-Konig F, Schonbohm J, Bayles D (2001) AIM 2000. J Comput Chem 22:545–559

    Article  Google Scholar 

  36. Popelier P (2000) Atoms in molecules, an introduction. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  37. Duer MJ (2002) Solid state NMR spectroscopy. Blackwell Science Ltd., London, p 2002

    Google Scholar 

  38. Erkoç S (2003) Structural and electronic properties of single-wall BN nanotubes. J Mol Struct: THEOCHEM 542(2003):89–93

    Google Scholar 

  39. Arenal R, Stéphan O, Kociak MD, Taverna AL, Colliex C (2005) Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Phys Rev Lett 95:127601–127604

    Article  CAS  Google Scholar 

  40. Rashidi-Ranjbar P, Sadjadi A, Shafiee GH, Foroutan-Nejad C (2008) Application of quantum theory of atoms in molecules on small single wall (6, 0) zigzag carbon clusters. Part I: topological analysis of electron density, structure and bonding. J Mol Struct: THEOCHEM 856:79–87

    Article  CAS  Google Scholar 

  41. Rozas I, Alkorta I, Elguero J (2000) Behaviour of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  42. Nouri A, Mirzaei M (2009) DFT calculations of B-11 and N-15 NMR parameters in BN nanocone. J Mol Struct: THEOCHEM 913:207–209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi D. Esrafili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esrafili, M.D., Behzadi, H. A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. Struct Chem 24, 573–581 (2013). https://doi.org/10.1007/s11224-012-0110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0110-3

Keywords

Navigation