Skip to main content

Advertisement

Log in

Dispersion corrected double high-hybrid and gradient-corrected density functional theory study of light cation–dihydrogen (M+–H2, where M = Li, Na, B and Al) van der Waals complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure, frequencies, H–H stretching frequency shifts, interaction energy, depth of the potential well and dissociation energy of the light cation–dihydrogen (M+–H2, where M = Li, Na, B, and Al) van der Waals complexes have been studied in detail using dispersion corrected double-hybrid and gradient-corrected density functional methods in conjunction with correlation consistent valence triple-ζ basis set. Equilibrium bond distance and dissociation energy agree very well with the experimental and theoretical values wherever available. The dissociation energies of Li+–H2, B+–H2, Na+–H2, and Al+–H2 van der Waals complexes calculated from the potential energy curves at mPW2PLYP-D/cc-pVTZ level are 4.83, 3.68, 2.42, and 1.25 kcal/mol, respectively, at a distances of 1.95, 2.25, 2.40, and 2.95 Å. Among all these complexes, Al+–H2 complex is comparatively less stable, as their dissociation energy as well as depth of the potential well are smaller compared to others complexes. The symmetry-adapted perturbation theory (SAPT) has been applied to quantify the nature of interactions. The SAPT results show that the contribution of dispersion and induction are significant, although electrostatic dominates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burley SK, Petsko GA (1985) Science 229:23–28

    Article  CAS  Google Scholar 

  2. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  3. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, New York

    Book  Google Scholar 

  4. Steed JW, Atwood JL (2000) Supramolecular chemistry: a concise introduction. Wiley, New York

    Google Scholar 

  5. Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM (2007) J Am Chem Soc 129:3842–3843

    Article  CAS  Google Scholar 

  6. Sanz C, Bodo E, Gianturco FA (2005) Chem Phys 314:135–142

    Article  CAS  Google Scholar 

  7. Emmeluth C, Poad BLJ, Thompson CD, Weddle GH, Bieske EJ (2007) J Chem Phys 126: 204309-1-204309-9

  8. De Silva N, Njegic B, Gordon MS (2011) J Phys Chem A 115:3272–3278

    Article  Google Scholar 

  9. Kraemer WP, Spirko V (2006) Chem Phys 330:190–203

    Article  CAS  Google Scholar 

  10. Dryza V, Poad BLJ, Bieske EJ (2008) J Am Chem Soc 130:12986–12991

    Article  CAS  Google Scholar 

  11. Kemper PR, Bushnell JE, Weis P, Bowers MT (1998) J Am Chem Soc 120:7577–7584

    Article  CAS  Google Scholar 

  12. Poad BLJ, Wearne PJ, Bieske EJ, Buchachenko AA, Bennett DIG, Klos J, Alexander MH (2008) J Chem Phys 129:184306-1-184306-8

    Google Scholar 

  13. Emmeluth C, Poad BLJ, Thompson CD, Weddle G, Bieske EJ, Buchachenko AA, Grinev TA, Klos J (2007) J Chem Phys 127:164310-1-164310-8

    Google Scholar 

  14. Bushnell JE, Kemper PR, Bowers MT (1994) J Phys Chem 98:2044

    Article  CAS  Google Scholar 

  15. Kemper PR, Bushnell J, Bowers MT, Gellene GI (1998) J Phys Chem A 102:8590–8597

    Article  CAS  Google Scholar 

  16. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  17. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  18. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149–5155

    Article  CAS  Google Scholar 

  19. Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115:8748–8757

    Article  CAS  Google Scholar 

  20. Parac M, Etinski M, Peric M, Grimme S (2005) J Chem Theory Comput 1:1110–1118

    Article  CAS  Google Scholar 

  21. Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) J Chem Theory Comput 7:88–96

    Article  CAS  Google Scholar 

  22. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:4786–4791

    Article  CAS  Google Scholar 

  23. Grimme S (2006) J Chem Phys 124:034108-1-034108-15

  24. Schwabe T, Grimme S (2006) Phys Chem Chem Phys 8:4398–4401

    Article  CAS  Google Scholar 

  25. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397–3406

    Article  CAS  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  27. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  28. Merecero JM, Maxtrain JM, Lopez X, York DM, Largo A, Eriksson LA, Ugalde JM (2005) Int J Mass Spectrum 240:37 and references therein

  29. Zimmerli U, Parrinello M, Koumoutsakos P (2004) J Chem Phys 120:2693–2699

    Article  CAS  Google Scholar 

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  31. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  32. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  33. Neese F (2010) ORCA—an ab initio, density functional and semiempirical program package, Version 2.80, Institut fuer Physikalische und Theoretische Chemie, Universitaet Bonn, Germany

  34. Zhurko GA, Zhurko DA (2010) Chemcraft, Vers. 1.6

  35. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887

    Article  CAS  Google Scholar 

  36. Gordon MS, Schmidt MW (2005) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  37. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  38. Bukowski R, Cencek W, Jankowski P, Jeziorska M, Jeziorski B, Kucharski SA, Lotrich VF, Misquitta AJ, Moszynski R, Patkowski K et al (2009) SAPT2008: an ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies, sequential and parallel versions. University of Delaware and University of Warsaw, Newark

    Google Scholar 

  39. Jennings DE, Brault JW (1983) J Mol Spectrosc 102:265–272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Srimanta Pakhira thanks Amit Chakraborty, Department of Theoretical Physics (IACS), for his assistance. Kaushik Sen and Chandan Sahu are grateful to the Council of Scientific and Industrial Research (CSIR), Government of India, for providing research fellowships. We thank Professor Prasanta Kumar Mukherjee, Ramkrishna Mission Vivekananda University, Belur Math, for his valuable suggestions. Thanks are also due to the reviewer for his constructive comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhira, S., Sahu, C., Sen, K. et al. Dispersion corrected double high-hybrid and gradient-corrected density functional theory study of light cation–dihydrogen (M+–H2, where M = Li, Na, B and Al) van der Waals complexes. Struct Chem 24, 549–558 (2013). https://doi.org/10.1007/s11224-012-0107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0107-y

Keywords

Navigation