Skip to main content
Log in

Hydrogen bonding topology influences gelating properties of malonamides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Preparation, structural characterisation and topology of hydrogen bonding networks of bis(phenylglycinol)malonamide, as well as its Cα mono- and dialkyl-substituted derivatives are described. Their hydrogen bonding motifs are described in view of their gelling properties. Topology of hydrogen bonding typical of malonamide gelators is compared with those of well-examined oxalamide gelators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Terech P, Weiss RD (eds) (2006) Molecular gels. Springer, Dordrecht

    Google Scholar 

  2. Smith KD (2008) Molecular gels: nanostructured soft materials. In: Steed JW, Atwood JL (eds) Organic nanostructures. Wiley, Weinheim

    Google Scholar 

  3. Fages F (2005) Top Curr Chem 256:1–273

    Article  Google Scholar 

  4. Terech P, Weiss RG (1997) Chem Rev 97:3133–3159

    Article  CAS  Google Scholar 

  5. van Esch JH, Feringa BL (2000) Angew Chem Int Ed 39:2263–2266

    Article  Google Scholar 

  6. de Loos M, Feringa BL, van Esch HJ (2005) Eur J Org Chem 2005:3615–3631

    Article  Google Scholar 

  7. Estroff LA, Hamilton AD (2004) Chem Rev 104:1201–1217

    Article  CAS  Google Scholar 

  8. Ellis-Behnke RG, Liang YX, You SW, Tay DKC, Zhang S, So KF, Schneider GE (2006) Proc Natl Acad Sci USA 103:5054–5059

    Article  CAS  Google Scholar 

  9. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Science 303:1352–1355

    Article  CAS  Google Scholar 

  10. Liang Z, Yang G, Ma M, Abbah AS, Lu WW, Xu B (2007) Chem Commun 843–845

  11. van Brommel KJC, Friggeri A, Shinkai S (2003) Angew Chem Int Ed 42:980–999

    Article  Google Scholar 

  12. Sada K, Takeuchi M, Fujita N, Numata M, Shinkai S (2007) Chem Soc Rev 36:415–435

    Article  CAS  Google Scholar 

  13. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Angew Chem Int Ed 44:2410–2413

    Article  CAS  Google Scholar 

  14. Puigmarti-Luis J, Laukhin V, Perez del Pino A, Vidal-Gancedo J, Rovira C, Laukhina C, Amabilino DB (2007) Angew Chem Int Ed 46:238–241

    Article  CAS  Google Scholar 

  15. Vemula PK, John G (2006) Chem Commun 2218–2220

  16. Tiller JC (2003) Angew Chem Int Ed 42:3072–3075

    Article  CAS  Google Scholar 

  17. Vinogradov SV, Bronich TK, Kabanov AV (2002) Adv Drug Deliv Rev 54:135–147

    Article  CAS  Google Scholar 

  18. Abdallah DJ, Sirchio SA, Weiss RG (2000) Langmuir 16:7558–7561

    Article  CAS  Google Scholar 

  19. Placin F, Desvergne J-P, Belin C, Buffeteau T, Desbat B, Ducasse L, Lassegues J-C (2003) Langmuir 19:4563–4572

    Article  CAS  Google Scholar 

  20. Olive AGL, Raffy G, Allouchi H, Leger J-M, Del Guerzo A, Desvergne J-P (2009) Langmuir 25:8606–8614

    Article  CAS  Google Scholar 

  21. Jonkheijm P, van der Schoot P, Schenning APH, Meijer EW (2006) Science 313:80–83

    Article  CAS  Google Scholar 

  22. Smith DK (2009) Chem Soc Rev 38:684–694

    Article  CAS  Google Scholar 

  23. de Loos M, van Esch JH, Kellogg RM, Feringa BL (2007) Tetrahedron 63:7285–7301

    Article  Google Scholar 

  24. Coe S, Kane JJ, Nguyen TL, Toledo LM, Wininger E, Fowler FW, Lauher JW (1997) J Am Chem Soc 119:86–93

    Article  CAS  Google Scholar 

  25. Nguyen TL, Fowler FW, Lauher JW (2001) J Am Chem Soc 123:11057–11064

    Article  CAS  Google Scholar 

  26. Allen FH (2002) Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  27. Klaska K-H, Jarchow O, Scham W, Widjaja H, Voss J, Schmalle HW (1980) J Chem Res 104:1643–1700

    Google Scholar 

  28. Frkanec L, Žinić M (2010) Chem Commun 46:522–537

    Article  CAS  Google Scholar 

  29. Makarević J, Jokić M, Raza Z, Štefanić Z, Kojić-Prodić B, Žinić M (2003) Chem Eur J 9:5567–5580

    Article  Google Scholar 

  30. Basarić N, Molčanov K, Matković M, Kojić-Prodić B, Mlinarić-Majerski K (2007) Tetrahedron 63:7985–7996

    Article  Google Scholar 

  31. Štefanić Z (2004) Doctoral thesis, University of Zagreb

  32. Jokić M, Čaplar V, Portada T, Makarević J, Šijaković Vujičić N, Žinić M (2009) Tetrahedron Lett 50:509–513

    Article  Google Scholar 

  33. Čaplar V, Raza Z, Katalenić D, Žinić M (2003) Croat Chem Acta 76:23–36

    Google Scholar 

  34. Loeventhal RE, Abiko A, Masamune S (1990) Tetrahedron Lett 3:6005–6008

    Article  Google Scholar 

  35. Bourguignon J, Bremberg U, Dupas G, Hallman K, Hagberg L, Hortala L, Levacher V, Lutsenko S, Macedo E, Moberg C, Quéguiner G, Rahm F (2003) Tetrahedron 59:9583–9589

    Article  CAS  Google Scholar 

  36. Evans DA, Woerpel KA, Nosse B, Schall A, Sinde Y, Jezek E, Haque MM, Chhor RB, Reiser O (2006) Org Synth 83:97–99

    CAS  Google Scholar 

  37. Makarević J, Jokić M, Raza Z, Čaplar V, Katalenić D, Štefanić Z, Kojić-Prodić B, Žinić M (2004) Croat Chem Acta 77:403–414

    Google Scholar 

  38. Harms K, Wocadlo S (1995) XCAD-4 program for processing CAD4 Diffractometer data. University of Marburg, Germany

    Google Scholar 

  39. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  40. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  41. Farrugia LJ (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  42. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  43. Hanabusa K, Okui K, Koyama T, Shirai HJ (1992) Chem Commun 1371–1373

  44. Hanabusa K, Kawakami A, Kimura M, Shirai H (1997) Chem Lett 191–192

  45. Kato T, Kondo G, Hanabusa K (1998) Chem Lett 193-194

  46. Hishikawa Y, Sada K, Watanabe R, Miyata M, Hanabusa K (1998) Chem Lett 795–796

  47. van Esch J, Schoonbeek F, de Loos M, Kooijman H, Spek AL, Kellogg RM, Feringa BL (1999) Chem Eur J 5:937–950

    Article  Google Scholar 

  48. Trivedi DR, Ballabh A, Dastidar P, Ganguly B (2004) Chem Eur J 10:5311–5322

    Article  CAS  Google Scholar 

  49. Bernstein J, Davies RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  50. Džolić Z, Margeta R, Vinković M, Štefanić Z, Kojić-Prodić B, Mlinarić-Majerski K, Žinić M (2008) J Mol Struct 876:218–224

    Article  Google Scholar 

  51. Sahho P, Kumar DK, Raghavan SR, Dastidar P (2011) Chem Asian J 6:1038–1047

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Croatian Ministry of Science, Education and Sports (Programs 098-1191344-2943 and 098-0982904-2912) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krešimir Molčanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molčanov, K., Portada, T., Čaplar, V. et al. Hydrogen bonding topology influences gelating properties of malonamides. Struct Chem 24, 597–609 (2013). https://doi.org/10.1007/s11224-012-0102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0102-3

Keywords

Navigation