Skip to main content
Log in

Structural topology and dimensional reduction in uranyl oxysalts: eight novel phases in the methylamine–(UO2)(NO3)2–H2SeO4–H2O system

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Single crystals of eight novel uranyl selenates, (CH3NH3)2[(UO2)(SeO4)2(H2O)](H2O) (I) and (CH3NH3)2[(UO2)(SeO4)2(H2O)] (II), (CH3NH3)2[(UO2)2(SeO4)3] (III) and (CH3NH3)(H3O)[(UO2)2(SeO4)3(H2O)](H2O) (IV), (CH3NH3)4[(UO2)3(SeO4)5](H2O)4 (V) and (CH3NH3)(H5O2)(H3O)2[(UO2)3(SeO4)5](H2O)4 (VI), (CH3NH3)4(H3O)2[(UO2)5(SeO4)8(H2O)](H2O)4 (VII), and (CH3NH3)1.5(H5O2)1.5(H3O)3[(UO2)5(SeO4)8(H2O)](H2SeO4)2.6(H2O)3 (VIII), have been prepared by isothermal evaporation from aqueous solutions and structurally characterized. The observed structural topologies of uranyl selenate units have been investigated using graph theory. The principle of dimensional reduction has been used for analysis of the uranyl oxysalts with general chemical formula A n (UO2) p (TO4) q (H2O) r (A = monovalent cation, and T = S, Se, Cr, Mo), which allowed to construct three-component composition-structure diagram with separate dimensionality fields for different chemical compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hyde BG, Andersson S (1989) Inorganic crystal structures. Wiley, New York

    Google Scholar 

  2. Hansen S, Andersson S, Fälth L (1982) Z Kristallogr 160:9

    CAS  Google Scholar 

  3. Andersson S, Hyde BG (1982) Z Kristallogr 158:119

    CAS  Google Scholar 

  4. Andersson S (1983) Angew Chem Int Ed 22:69

    Google Scholar 

  5. Nyman H, Hyde BG, Andersson S (1984) Acta Crystallogr B40:441

    CAS  Google Scholar 

  6. Burns PC, Miller ML, Ewing RC (1996) Can Miner 34:845

    CAS  Google Scholar 

  7. Burns PC (1999) Rev Miner 38:23

    CAS  Google Scholar 

  8. Burns PC (2005) Can Miner 43:1839

    CAS  Google Scholar 

  9. Krivovichev SV, Burns PC, Tananaev IG (eds) (2007) Structural chemistry of inorganic compounds. Elsevier, Amsterdam

    Google Scholar 

  10. Miller ML, Finch RJ, Burns PC, Ewing RC (1996) J Mater Res 11:3048

    CAS  Google Scholar 

  11. Krivovichev SV (2004) Crystallogr Rev 10:185

    CAS  Google Scholar 

  12. Krivovichev SV (2008) Structural crystallography of inorganic oxysalts. Oxford University Press, Oxford

    Google Scholar 

  13. Burns PC, Hughes Kubatko KA, Sigmon G, Fryer BJ, Gagnon JE, Antonio MR, Soderholm L (2005) Angew Chem Int Ed 44:2135

    CAS  Google Scholar 

  14. Sigmon G, Unruh DK, Ling J, Weaver B, Ward M, Pressprich L, Simonetti A, Burns PC (2009) Angew Chem Int Ed 48:2737

    CAS  Google Scholar 

  15. Burns PC (2010) C R Chim 13:737

    CAS  Google Scholar 

  16. Krivovichev SV, Kahlenberg V, Kaindl R, Mersdorf E, Tananaev IG, Myasoedov BF (2005) Angew Chem Int Ed 44:1134

    CAS  Google Scholar 

  17. Krivovichev SV, Kahlenberg V, Tananaev IG, Kaindl R, Mersdorf E, Myasoedov BF (2005) J Am Chem Soc 127:1072

    CAS  Google Scholar 

  18. Alekseev EV, Krivovichev SV, Depmeier W (2008) Angew Chem Int Ed 47:549

    CAS  Google Scholar 

  19. Chen CS, Lee SF, Lii KH (2005) J Am Chem Soc 127:12208

    CAS  Google Scholar 

  20. Lin C, Chen C, Shiryaev AA, Zubavichus YV, Lii KH (2008) Inorg Chem 47:4445

    CAS  Google Scholar 

  21. Lee CS, Wang SL, Lii KH (2009) J Am Chem Soc 131:15116

    CAS  Google Scholar 

  22. Wang S, Alekseev EV, Miller HM, Depmeier W, Albrecht-Schmitt TE (2010) Inorg Chem 49:9755

    CAS  Google Scholar 

  23. Wang S, Alekseev EV, Stritzinger JT, Depmeier W, Albrecht-Schmitt TE (2010) Inorg Chem 49:6690

    CAS  Google Scholar 

  24. Wang S, Alekseev EV, Stritzinger JT, Depmeier W, Albrecht-Schmitt TE (2010) Inorg Chem 49:2948

    CAS  Google Scholar 

  25. Krivovichev SV (2010) Eur J Inorg Chem 2010:2594

    Google Scholar 

  26. Alekseev EV, Krivovichev SV, Armbruster T, Depmeier W, Suleimanov EV, Chuprunov EV, Golubev AV (2007) Z Anorg Allg Chem 633:1979

    CAS  Google Scholar 

  27. Long JR, McCarty LS, Holm RH (1996) J Am Chem Soc 118:4603

    CAS  Google Scholar 

  28. Tulsky EG, Long JR (2001) Chem Mater 13:1149

    CAS  Google Scholar 

  29. Haddad S, Awwadi F, Willet RD (2003) Cryst Growth Des 3:501

    CAS  Google Scholar 

  30. Sheldrick GM (2008) Acta Crystallogr A64:112

    CAS  Google Scholar 

  31. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435

    Google Scholar 

  32. Krivovichev SV (2004) Radiochemistry 46:434

    CAS  Google Scholar 

  33. Tabachenko VV, Serezhkin VN, Serezhkina LB, Kovba LM (1979) Koord Khim 5:1563

    CAS  Google Scholar 

  34. Mikhailov YUN, Gorbunova YUE, Demchenko EA, Serezhkina LB, Serezhkin VN (2000) Zh Neorg Khim 45:1711

    CAS  Google Scholar 

  35. Norquist AJ, Thomas PM, Doran MB, O’Hare D (2002) Chem Mater 14:5179

    CAS  Google Scholar 

  36. Norquist AJ, Doran MB, Thomas PM, O’Hare D (2003) Dalton Trans 2003:1168

    Google Scholar 

  37. Norquist AJ, Doran MB (2003) Solid State Sci 5:1149

    CAS  Google Scholar 

  38. Thomas PM, Norquist AJ, Doran MB (2003) J Mater Chem 13:88

    CAS  Google Scholar 

  39. Stuart CL, Doran MB, Norquist AJ, O’Hare D (2003) Acta Crystallogr E59:m446

    CAS  Google Scholar 

  40. Mercier R, Pham TM, Colomban P (1985) Solid State Ion 15:113

    CAS  Google Scholar 

  41. Gesing TM, Rüscher CH (2000) Z Anorg Chem 626:1414

    CAS  Google Scholar 

  42. Krivovichev SV, Kahlenberg V (2005) Z Naturforsch 60b:538

    Google Scholar 

  43. Krivovichev SV, Kahlenberg V (2005) Z Anorg Allg Chem 631:2352

    CAS  Google Scholar 

  44. Krivovichev SV (2008) Zap Vseross Miner Ova 137(1):54

    CAS  Google Scholar 

  45. Gurzhiy VV, Tyumentseva OS, Krivovichev SV, Tananaev IG, Myasoedov BF (2011) Radiochemistry 53:569

    CAS  Google Scholar 

  46. Krivovichev SV, Gurzhiy VV, Tananaev IG, Myasoedov BF (2009) Russ J Gen Chem 79:2723

    CAS  Google Scholar 

  47. Ling J, Sigmon GE, Ward M, Roback N, Burns PC (2010) Z Kristallogr 225:230

    CAS  Google Scholar 

  48. Doran MB, Norquist AJ, Stuart CL, O’Hare D (2004) Acta Crystallogr E60:m996

    CAS  Google Scholar 

  49. Krivovichev SV, Kahlenberg V (2004) Z Anorg Allg Chem 630:2736

    CAS  Google Scholar 

  50. Krivovichev SV, Burns PC (2003) Z Kristallogr 218:683

    CAS  Google Scholar 

  51. Norquist AJ, Doran MB, Thomas PM, O’Hare D (2003) Inorg Chem 42:5949

    CAS  Google Scholar 

  52. Krivovichev SV, Burns PC (2003) Z Kristallogr 218:568

    CAS  Google Scholar 

  53. Marukhnov AV, Serezhkin VN, Pushkin DV, Smirnov OP, Plakhtii VP (2008) Russ J Inorg Chem 53:1283

    Google Scholar 

  54. Serezhkin VN, Efremov VA, Trunov VK (1980) Crystallogr Rep 25:494

    Google Scholar 

  55. Van den Putten N, Loopstra BO (1974) Cryst Struct Commun 3:377

    Google Scholar 

  56. Zalkin A, Ruben H, Templeton DH (1978) Inorg Chem 17:3701

    CAS  Google Scholar 

  57. Brandenburg NP, Loopstra BO (1973) Cryst Struct Commun 2:243

    CAS  Google Scholar 

  58. Serezhkin VN, Soldatkina MA, Efremov VA (1981) Zh Strukt Khim 22:171

    CAS  Google Scholar 

  59. Serezhkin VN, Trunov VK (1981) Crystallogr Rep 26:301

    CAS  Google Scholar 

  60. Krivovichev SV, Burns PC (2003) Solid State Sci 5:481

    CAS  Google Scholar 

  61. Sadikov GG, Krasovskaya TI, YuA Polyakov, Nikolaev VP (1998) Izv Akad Nauk SSSR Neorg Mater 24:109

    Google Scholar 

  62. Krivovichev SV, Burns PC (2002) J Solid State Chem 168:245

    CAS  Google Scholar 

  63. Krivovichev SV, Burns PC (2005) Can Miner 43:713

    CAS  Google Scholar 

  64. Krivovichev SV, Finch R, Burns PC (2002) Can Miner 40:193

    CAS  Google Scholar 

  65. Krivovichev SV, Locock AJ, Burns PC (2005) Z Kristallogr 220:10

    CAS  Google Scholar 

  66. Gurzhiy VV, Krivovichev SV, Tananaev IG (2012) Radiochemistry (in prep)

  67. Medrish IV, Vologzhanina AV, Starikova ZA, Antipin MYU, Serezhkina LB, Serezhkin VN (2005) Russ J Inorg Chem 50:360

    Google Scholar 

  68. Rastsvetaeva RK, Barinova AV, Fedoseev AM, Budantseva NA, Nikolaev YUV (1999) Dokl Ross Akad Nauk 365:68

    Google Scholar 

  69. Andreev GB, MYu Antipin, Fedoseev AM, Budantseva NA (2001) Russ J Coord Chem 27:208

    CAS  Google Scholar 

  70. Khrustalev VN, Andreev GB, Antipin MYU, Fedoseev AM, Budantseva NA, Shirokova IB (2000) Russ J Inorg Chem 45:1845

    Google Scholar 

  71. Niinisto L, Toivonen J, Valkonen J (1979) Acta Chem Scand A33:621

    CAS  Google Scholar 

  72. Mikhailov YUN, Gorbunova YUE, Shishkina OV, Serezhkina LB, Serezhkin VN (2001) Russ J Inorg Chem 46:1661

    Google Scholar 

  73. Krivovichev SV, Kahlenberg V (2005) Z Anorg Allg Chem 631:739

    CAS  Google Scholar 

  74. Mikhailov YUN, Gorbunova YUE, Serezhkina LB, Demchenko EA, Serezhkin VN (1997) Zh Neorg Khim 42:1413

    CAS  Google Scholar 

  75. Serezhkin VN, Verevkin AG, Smirnov OP, Plahtii VP (2010) Russ J Inorg Chem 55:1600

    CAS  Google Scholar 

  76. Niinisto L, Toivonen J, Valkonen J (1978) Acta Chem Scand A32:647

    CAS  Google Scholar 

  77. Ling J, Sigmon GE, Burns PC (2009) J Solid State Chem 182:402

    CAS  Google Scholar 

  78. Krivovichev SV (2008) Geol Ore Depos 50:789

    Google Scholar 

  79. Krivovichev SV (2008) Geol Ore Depos 50:795

    Google Scholar 

  80. Krivovichev SV, Kahlenberg V (2005) Z Anorg Allg Chem 631:2358

    CAS  Google Scholar 

  81. Baggio RF, de Benyacar MAR, Perazzo BO, de Perazzo PK (1977) Acta Crystallogr B33:3495

    CAS  Google Scholar 

  82. Gurzhiy VV, Tyumentseva OS, Krivovichev SV, Tananaev IG, Myasoedov BF (2012) Radiochemistry 54:43

    CAS  Google Scholar 

  83. Krivovichev SV, Burns PC (2003) Can Miner 41:707

    CAS  Google Scholar 

  84. Mikhailov YUN, Gorbunova YUE, Baeva EE, Serezhkina LB, Serezhkin VN (2001) Russ J Inorg Chem 46:2017

    CAS  Google Scholar 

  85. Norquist AJ, Doran MB, Thomas PM, O’Hare D (2003) Dalton Trans 2003:1168

    Google Scholar 

  86. Ross M, Evans HT Jr (1960) J Inorg Nucl Chem 15:338

    CAS  Google Scholar 

  87. Krivovichev SV, Cahill CL, Burns PC (2002) Inorg Chem 41:34

    CAS  Google Scholar 

  88. Nazarchuk EV, Krivovichev SV, Burns PC (2005) Radiochemistry 47:447

    CAS  Google Scholar 

  89. Krivovichev SV, Gurzhii VV, Tananaev IG, Myasoedov BF (2006) Dokl Phys Chem 409:228

    CAS  Google Scholar 

  90. Krivovichev SV, Kahlenberg V (2005) Radiochemistry 47:452

    CAS  Google Scholar 

  91. Krivovichev SV, Burns PC (2003) Z Kristallogr 218:725

    CAS  Google Scholar 

  92. YuN Mikhailov, YuE Gorbunova, Serezhkina LB, Serezhkin VN (1997) Zh Neorg Khim 42:734

    Google Scholar 

  93. Blatov VA, Serezhkina LB, Serezhkin VN, Trunov VK (1988) Russ J Coord Chem 14:1705

    CAS  Google Scholar 

  94. Kuchumova NV, Shtokova IP, Serezhkina LB, Serezhkin VN (1989) Zh Neorg Khim 34:1029

    CAS  Google Scholar 

  95. Baeva EE, Virovets AV, Peresypkina EV, Serezhkina LB (2006) Russ J Inorg Chem 51:210

    Google Scholar 

  96. Krivovichev SV, Cahill CL, Nazarchuk EV, Burns PC, Armbruster T, Depmeier W (2005) Micropor Mesopor Mater 78:225

    CAS  Google Scholar 

  97. Doran M, Norquist AJ, O’Hare D (2002) Chem Commun 2002:2946

    Google Scholar 

  98. Krivovichev SV, Burns PC (2001) Can Miner 39:207

    CAS  Google Scholar 

  99. Krivovichev SV, Armbruster T, DYu Chernyshov, Burns PC, Nazarchuk EV, Depmeier W (2005) Micropor Mesopor Mater 78:225

    CAS  Google Scholar 

  100. Krivovichev SV, Burns PC (2003) Z Anorg Allg Chem 629:1965

    CAS  Google Scholar 

  101. Krivovichev SV, Cahill CL, Burns PC (2003) Inorg Chem 42:2459

    CAS  Google Scholar 

  102. Krivovichev SV, Burns PC (2002) Can Miner 40:210

    Google Scholar 

  103. Krivovichev SV, Burns PC (2001) Can Miner 39:197

    CAS  Google Scholar 

  104. Sykora RE, McDaniel SM, Albrecht–Schmitt TE (2004) J Solid State Chem 177:1431

    CAS  Google Scholar 

  105. Krivovichev SV, Kahlenberg V (2005) Radiochemistry 47:415

    Google Scholar 

Download references

Acknowledgments

This study was supported by RFBR (Grant 12-03-90711 to VVG) and St. Petersburg State University through the internal grant 3.37.84.2011 and the X-Ray Diffraction Resource Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Krivovichev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovrugin, V.M., Gurzhiy, V.V. & Krivovichev, S.V. Structural topology and dimensional reduction in uranyl oxysalts: eight novel phases in the methylamine–(UO2)(NO3)2–H2SeO4–H2O system. Struct Chem 23, 2003–2017 (2012). https://doi.org/10.1007/s11224-012-0001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0001-7

Keywords

Navigation