Skip to main content
Log in

Calculation of the HOMA model parameters for the carbon–boron bond

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

An extension of the harmonic oscillator model of aromaticity (HOMA) model to systems with carbon–boron bonds is presented. Model parameters were estimated using experimental and theoretical bond lengths. It is shown that both approaches produce very similar HOMA models. In the second part of the article, the aromaticity levels of several model compounds containing carbon–boron bonds are calculated using the previously obtained parameters. The results of these calculations are compared with those provided by other aromaticity indices. The aromaticity of boron-containing compounds is also compared with the aromaticity of analogous compounds containing carbon and nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385–1420

    Article  CAS  Google Scholar 

  2. Kruszewski J, Krygowski TM (1972) Tetrahedron Lett 13:3839–3842

    Article  Google Scholar 

  3. Krygowski TM (1993) J Chem Inf Comput Sci 33:70–78

    Article  CAS  Google Scholar 

  4. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  5. Raczynska ED (2005) Pol J Chem 79:749–758

    CAS  Google Scholar 

  6. Zborowski KK, Proniewicz LM (2008) J Phys Org Chem 21:207–214

    Article  CAS  Google Scholar 

  7. Zborowski KK, Proniewicz LM (2009) Pol J Chem 83:477–484

    CAS  Google Scholar 

  8. Madura ID, Krygowski TM, Cyranski MK (1998) Tetrahedron 54:14913–14918

    Article  CAS  Google Scholar 

  9. Krogh-Jespersen K, Cremer D, Dill JD, Pople JA, PvR Schleyer (1981) J Am Chem Soc 103:2589–2594

    Article  CAS  Google Scholar 

  10. Aihara J, Kanno H, Ishida T (2005) J Am Chem Soc 127:13324–13330

    Article  CAS  Google Scholar 

  11. Del Bene JE, Yañez M, Alkorta I, Elguero J (2009) J Chem Theory Comp 5:2239–2247

    Article  CAS  Google Scholar 

  12. Yu HL, Sang RL, Wu YY (2009) J Phys Chem A 113:3382–3386

    Article  CAS  Google Scholar 

  13. Kiran B, Gopa Kumar G, Nguyen MT, Kandalam AK, Jena P (2009) Inorg Chem 48:9965–9967

    Article  CAS  Google Scholar 

  14. Ruman T, Jarmuła A, Rode W (2010) Bioorg Chem 38:242–245

    Article  CAS  Google Scholar 

  15. Pauling L (1947) J Am Chem Soc 69:542–553

    Article  CAS  Google Scholar 

  16. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:10255–10264

    Article  CAS  Google Scholar 

  17. Schleyer PvR, Marker C, Dransfeld A, Jiao HJ, Hommes NJRV (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  18. Schleyer PvR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes NJRV (2001) Org Lett 3:2465–2468

    Article  CAS  Google Scholar 

  19. Corminboeuf C, Heine T, Seifert G, Schleyer PvR, Weber J (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  20. Sola M, Feixas F, Jimenez-Halla JOC, Matito E, Poater J (2010) Symmetry 2:1156–1179

    Article  CAS  Google Scholar 

  21. Palusiak M, Krygowski TM (2007) Chem Eur J 13:7996–8006

    Article  CAS  Google Scholar 

  22. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University, New York

    Google Scholar 

  23. Keith TA, AIMAll (Version 09.11.08, standard), TK Gristmill Software, Overland Park KS, USA, 2009. http://aim.tkgristmill.com

  24. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  25. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1372

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648–5653

    Article  CAS  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–655

    Article  CAS  Google Scholar 

  28. Wolinski K, Hilton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  29. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross J, Bakken BV, Adamo C, Jaramillo J, Gomperts JR, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PA, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CT

  30. Boese R, Paetzold P, Tapper A, Ziembinski R (1989) Chem Ber 122:1057–1060

    Article  CAS  Google Scholar 

  31. Schleyer PvR, Jiao H, van Eikema Hommes JR, Malkin VG, Malkina OL (1997) J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Tadeusz M. Krygowski for advice and helpful discussions. We also thank the Academic Computer Centre “Cyfronet” Krakow for funding the computer time. We thank the Ministerio de Ciencia e Innovación (Project No. CTQ2009-13129-C02-02) and the Comunidad Autónoma de Madrid (Project MADRISOLAR2, ref. S2009/PPQ-1533) for continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof K. Zborowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zborowski, K.K., Alkorta, I., Elguero, J. et al. Calculation of the HOMA model parameters for the carbon–boron bond. Struct Chem 23, 595–600 (2012). https://doi.org/10.1007/s11224-011-9907-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9907-8

Keywords

Navigation