Skip to main content
Log in

Axial chirality of N,N′-disubstituted 3,4-ethylenedioxythiophene-2,5-dicarboxamides

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A series of N,N’-disubstituted 3,4-ethylenedioxythiophene-2,5-dicarboxamides was synthesised by amide bond formation between 3,4-ethylenedioxythiophene-2,5-dicarbonyl chloride and corresponding primary amines, where the size and the nature of the substituent were varied. The crystal structures of prepared compounds were determined by X-ray structure analysis. Mechanism and reaction rates of interconversion between conformational isomers were obtained by DFT calculations. All studied compounds reveal axial chirality with molecular symmetry C 2. Amide bond isomerisation and twisting of the dioxane ring in studied compounds results in the formation of series of conformers of which the s-trans/s-trans conformer is energetically most favourable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Yang J, Kim DH, Hendricks JL, Leach M, Northey R, Martin DC (2005) Acta Biomater 1:125–136

    Article  Google Scholar 

  2. Bello A, Giannetto M, Mori G, Seeber R, Terzi F, Zanardi C (2007) Sens Actuators B 121:430–435

    Article  Google Scholar 

  3. Roncali J, Blanchard P, Frère P (2005) J Mater Chem 15:1589–1610

    Article  CAS  Google Scholar 

  4. Liu R, Cho SI, Lee SB (2008) Nanotechnology 19:215710–215718

    Article  Google Scholar 

  5. Stolić I, Mišković K, Magdaleno A, Silber AM, Piantanida I, Bajić M, Glavaš-Obrovac Lj (2009) Bioorg Med Chem 17:2544–2554

    Article  Google Scholar 

  6. Stolić I, Mišković K, Piantanida I, Baus-Lončar M, Glavaš-Obrovac Lj, Bajić M (2011) Eur J Med Chem 46:743–755

    Article  Google Scholar 

  7. Rahman MA, Kumar P, Park DS, Shim YB (2008) Sensors 8:118–141

    Article  CAS  Google Scholar 

  8. Rao SS, Winter JO (2009) Front Neuroeng 2:1–14

    Article  Google Scholar 

  9. Bally M, Voros J (2009) Nanomedicine 4:447–467

    Article  CAS  Google Scholar 

  10. Kros A, Nolte RJM, Sommerdijk NAJM (2002) J Polym Sci A 40:738–747

    Article  CAS  Google Scholar 

  11. Luo SC, Ali EM, Tansil NC, Yu HH, Gao S, Kantchev EAB, Ying JY (2008) Langmuir 24:8071–8077

    Article  CAS  Google Scholar 

  12. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:481–494

    Article  CAS  Google Scholar 

  13. Laughton CA, Tanious F, Nunn CM, Boykin DW, Wilson WD, Neidle S (1996) Biochemistry 35:5655–5661

    Article  CAS  Google Scholar 

  14. Hall JE, Kerrigan JE, Ramachandran K, Bender BC, Stanko JP, Jones SK, Patric DA, Tidwell RR (1998) Antimicrob Agents Chemother 42:666–674

    CAS  Google Scholar 

  15. Sotzing GA, Reynolds JR, Steel PJ (1996) Chem Mater 8:882–889

    Article  CAS  Google Scholar 

  16. Abboud KA, Irvin DJ, Reynolds JR (1998) Acta Crystallogr C 54:1994–1997

    Article  Google Scholar 

  17. Kumar A, Welsh DM, Morvant MC, Piroux F, Abboud KA, Reynolds JR (1998) Chem Mater 10:896–902

    Article  CAS  Google Scholar 

  18. Ono K, Tomura M, Saito K (2008) Acta Crystallogr E 64:o468

    Article  Google Scholar 

  19. Djukic B, Harrington LE, Britten JF, Lemaire MT (2008) Acta Crystallogr E 64:o463

    Article  Google Scholar 

  20. Molčanov K, Stolić I, Kovačević G, Kojić-Prodić B, Bajić M (2011) J Mol Struct 987:174–179

    Article  Google Scholar 

  21. Dodziuk H, Mirowicz M (1990) Tetrahedron Asymmetry 1:171–186

    Article  CAS  Google Scholar 

  22. Dodziuk H (1992) Tetrahedron Asymmetry 3:43–50

    Article  CAS  Google Scholar 

  23. CrysAlis PRO (2007) Oxford Diffraction Ltd, UK

  24. Sheldrick GM (2008) Acta Crystallogr A64:112–122

    CAS  Google Scholar 

  25. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  26. Farrugia LJ (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  27. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, Van De Streek J (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  28. Zhao Y, Thrular DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  29. Coffey M, McKellar BR, Reinhardt BA, Nijakowski T, Feld WA (1996) Synth Commun 26:2205–2212

    Article  CAS  Google Scholar 

  30. Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  31. Vereshchagin AN (1983) Russ Chem Rev 52:1081–1095

    Article  Google Scholar 

  32. Durig JR, Carter RO, Carreira LA (1974) J Chem Phys 60:3098–3104

    Article  CAS  Google Scholar 

  33. Choo J, Yoo S, Moon S, Kwon Y, Chung H (1998) Vib Spectrosc 17:173–182

    Article  CAS  Google Scholar 

  34. Tecklenburg MM, Looney J (1989) J Am Chem Soc 111:6920–6926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Croatian Ministry of Science, Education and Sports (Programs 098-1191344-2943 and 053-0982914-2965) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Bajić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolić, I., Molčanov, K., Kovačević, G. et al. Axial chirality of N,N′-disubstituted 3,4-ethylenedioxythiophene-2,5-dicarboxamides. Struct Chem 23, 425–432 (2012). https://doi.org/10.1007/s11224-011-9885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9885-x

Keywords

Navigation