Skip to main content
Log in

Computational study on the reaction mechanism of the gas-phase atom-negative ion of S + NO2 : comparative study of mechanism with S + O3 reaction as isoelectronic and isostructure systems

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction mechanism of sulfur vapor (S) with nitrite ion (NO2 ) has been investigated theoretically on the triplet and singlet potential energy surfaces (PESs). All stationary points for the title reaction have been optimized at the B3LYP/6-311+G(3df) level. The energetic data have been obtained at the CCSD(T)//B3LYP level employing the 6-311+G(3df) basis set. Five stable collision complexes, 3IN1 (S–ONO), 3IN2 (cyclic SONO), 1IN1 (cis S–ONO), 1IN2 (S–NO2 ), and 1IN3 (trans S–ONO), have been considered on the triplet and singlet PESs through barrier-less and exothermic processes. By starting from these complexes, a simple mechanism has been obtained on the triplet PES while a complex mechanism has been considered on the singlet PES. The calculated results show that there are no favorable paths for the reaction of S with NO2 on the singlet PES. Therefore, the S + NO2 reaction proceeds only on the triplet PES to produce 3SO + 3NO as main products. The results from the comparative study of S + NO2 reaction mechanism with S + O3 (as isoelectronic and isostructure reactions) on the singlet PES show similarities in the overall trend of reaction mechanism and atom connectivity and differences in the stability of intermediates and the energy barriers of transition states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferguson EE, Arnold F (1981) Acct Chem Res 14:327

    Article  CAS  Google Scholar 

  2. Narcisi RS, Bailey AD (1965) J Geophys Res 70:3687

    Article  CAS  Google Scholar 

  3. Ferguson EE, Fehsenfeld FC, Albritton DL (1979) In: Bowers MT (ed) Gas phase ion chemistry, vol 1, Academic Press, New York

  4. Fehsenfeld FC, Howard CJ, Schmeltekopf AL (1975) J Chem Phys 63:2835

    Article  CAS  Google Scholar 

  5. Amelynck C, Stépien C, Schoon N, Catoire V, Labonnette D, Arijs E, Poulet G (2001) Int J Mass Spectrom 207:205

    Article  CAS  Google Scholar 

  6. Fehsenfeld FC, Ferguson EE (1968) Planet Space Sci 16:701

    Article  CAS  Google Scholar 

  7. Narcisi RS, Bailey AD, Della Lucca L, Sherman C, Thomas DM (1971) J Atmos Terr Phys 33:1147

    Article  CAS  Google Scholar 

  8. Pelc A, Sailer W, Matejcik S, Scheier P, Märk TD (2003) J Chem Phys 119:7887

    Article  CAS  Google Scholar 

  9. Compton RN, Carman HS, Desfrancois C, Abdoul-Carmine H, Schermann JP, Hendricks JH, Lyapustina SA, Bowen KH (1996) J Chem Phys 105:3472

    Article  CAS  Google Scholar 

  10. Stockdale JA, Davis FJ, Compton RN, Klots CE (1974) J Chem Phys 60:4279

    Article  CAS  Google Scholar 

  11. Wincel H (2004) Int J Mass Spectrom 232:185

    Article  CAS  Google Scholar 

  12. Wincel H (2003) Int J Mass Spectrom 226:341

    Article  CAS  Google Scholar 

  13. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17 (Suppl 1)

  14. Schalley CA, Schröder D, Schwarz H, Möbus K, Boche G (1997) Chem Ber 130:1085

    Article  CAS  Google Scholar 

  15. Huey LG, Hanson DR, Howard CJ (1995) J Phys Chem 99:5001

    Article  CAS  Google Scholar 

  16. Mallard WG, Linstrom PJ (2000) (eds.) By taking into account the heats of formation of the reactants and products as reported in NIST Chemistry Web Book, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg (http://webbook.nist.gov)

  17. Davidson JA, Viggiano AA, Howard CJ, Dotan I, Fehsenfeld FC, Albritton DL, Ferguson EE (1978) J Chem Phys 68:2085

    Article  CAS  Google Scholar 

  18. Dotan I, Albritton DL, Fehsenfeld FC, Streit GE, Ferguson EE (1978) J Chem Phys 68:5414

    Article  CAS  Google Scholar 

  19. Turco RP (1977) J Geophcys Res 82:3585

    Article  CAS  Google Scholar 

  20. Arnold F, Krankowsky D (1971) J Atmos Terr Phys 33:1693

    Article  CAS  Google Scholar 

  21. Ferguson EE, Dunkin DB, Fehsenfeld FC (1972) J Chem Phys 57:1459

    Article  CAS  Google Scholar 

  22. Van Doren JM, Viggiano AA, Morris RA, Miller TM (1995) J Chem Phys 103:10806

    Article  Google Scholar 

  23. Goodarzi M, Vahedpour M, Nazari F (2010) J Mol Struct Theochem 944:110

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 (revision A.7 ). Gaussian Inc., Pittsburgh

    Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Phys Rev 37:785

    Article  CAS  Google Scholar 

  27. Raghavachair K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  Google Scholar 

  28. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moein Goodarzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodarzi, M., Vahedpour, M. & Solimannejad, M. Computational study on the reaction mechanism of the gas-phase atom-negative ion of S + NO2 : comparative study of mechanism with S + O3 reaction as isoelectronic and isostructure systems. Struct Chem 23, 381–392 (2012). https://doi.org/10.1007/s11224-011-9880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9880-2

Keywords

Navigation