Skip to main content
Log in

Interpreting the electronic structure of the hydrogen-bridge bond in B2H6 through a hypothetical reaction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In order to elucidate the electronic structure of the hydrogen-bridge bond in B2H6 molecule, the formation process of B2H6 had been created by a hypothetical reaction of “B2H4 2− + 2H+”, and the symmetry principles for reaction are applied in the process of creating new molecular orbitals through linear combination of the old orbitals. The orbital components of the hydrogen-bridge bond in B2H6 are obtained, and the electronic structure of the hydrogen-bridge bond is explained qualitatively. In addition, the idea that explains the structure of a molecule by creating a hypothetical reaction is proposed, which might make more application in other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Staubitz A, Roberttson APM, Sloan ME, Manners L (2010) Chem Rev 110:4023–4078

    Article  CAS  Google Scholar 

  2. Fox MA, Wade K (2003) Pure Appl Chem 75:1315–1323

    Article  CAS  Google Scholar 

  3. Srinivasu K, Chandrakumar KRS, Ghosh SK (2010) J Phys Chem A 114:12244–12250

    Article  CAS  Google Scholar 

  4. Brown HC, Kanth JVB, Zaidlewicz M (1999) Tetrahedron 55:5991–6000

    Article  CAS  Google Scholar 

  5. Mclaughlin M, Garciarubio S, Muthyala R, Antunes OAC, Tilstam U, Zlota A, Yadav GD, Laird T (2006) Org Process Res Dev 10:687–702

    Article  CAS  Google Scholar 

  6. Song Y, Murli C, Liu Z (2009) J Chem Phys 131:174506

    Article  Google Scholar 

  7. Laszlo P (2000) Angew Chem Int Ed 39:2071–2072

    Article  CAS  Google Scholar 

  8. Murli C, Song Y (2009) J Phys Chem B 113:13509–13515

    Article  CAS  Google Scholar 

  9. Fan YB, Ding ZB, Wang QR, Tao FG (2000) Chem Phys Lett 328:39–44

    Article  CAS  Google Scholar 

  10. Wang SH, Swain GM (2007) J Phys Chem C 111:3986–3995

    Article  CAS  Google Scholar 

  11. Lamborn DR, Snyder DW, Xi XX (2007) J Cryst Growth 299:358–364

    Article  CAS  Google Scholar 

  12. Ma J, Richley JC, Davies DR, Ashfold MN (2010) J Phys Chem A 114:10076–10089

    Article  CAS  Google Scholar 

  13. Wang F, Pang WN, Huang M (2006) J Electron Spectrosc Relat Phenom 151:215–223

    Article  Google Scholar 

  14. Türker L (2003) J Mol Struct (Theochem) 629:279–284

    Article  Google Scholar 

  15. Di Pietro E, Cardini G, Schettino V (2007) Phys Chem Chem Phys 9:3857–3863

    Article  CAS  Google Scholar 

  16. Tian SX, Li HB, Bai YB, Yang JL (2008) J Phys Chem A 12:8121–8128

    Article  Google Scholar 

  17. Li HZ, Min DH, Shore SG, Lipscomb WN, Yang W (2007) Inorg Chem 46:3956–3959

    Article  CAS  Google Scholar 

  18. Ravinder P, Subramanian V (2010) J Phys Chem A 114:5565–5572

    Article  CAS  Google Scholar 

  19. Barone V, Orlandini L, Adamo C (1994) J Phys Chem 98:13185–13188

    Article  CAS  Google Scholar 

  20. Downs AJ, Greene TM, Johnsen E, Pulham CR, Robertson HE, Wann DA (2010) Dalton Trans 39:5637–5642

    Article  CAS  Google Scholar 

  21. Schimmelpfening B, Wahlgren U, Gropen O, Haaland A (2001) J Chem Soc Dalton Trans 1616–1620

  22. Rasul G, Prakash GKS, Olah GA (2005) J Phys Chem A 109:798–801

    Article  CAS  Google Scholar 

  23. Srinivas GN, Chen Z, Hamilton TP, Lammertsma K (2000) Chem Phys Lett 329:239–247

    Article  CAS  Google Scholar 

  24. Andrews L, Wang X (2003) Science 299:2049–2052

    Article  CAS  Google Scholar 

  25. Mulliken RS (1935) J Chem Phys 3:635–645

    Article  CAS  Google Scholar 

  26. Mulliken RS (1947) Chem Rev 41:207–217

    Article  CAS  Google Scholar 

  27. Pitzer KS (1945) J Am Chem Soc 67:1126–1132

    Article  CAS  Google Scholar 

  28. Melin J, Ayers PW, Ortiz JV (2007) J Phys Chem A 111:10017–10019

    Article  CAS  Google Scholar 

  29. Magnasco V (2005) Chem Phys Lett 407:213–216

    Article  CAS  Google Scholar 

  30. Kraka E, Wu A, Cremer D (2003) J Phys Chem A 107:9008–9021

    Article  CAS  Google Scholar 

  31. Gimarc BM (1973) J Am Chem Soc 95:1417–1421

    Article  CAS  Google Scholar 

  32. Buenker RJ, Peyerimhoff SD, Allen LC, Whitten JL (1966) J Chem Phys 45:2835–2847

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study is supported by the Scientific Research Foundation of Fuyang Normal College (2010FSKJ04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongbao Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, R. Interpreting the electronic structure of the hydrogen-bridge bond in B2H6 through a hypothetical reaction. Struct Chem 23, 525–527 (2012). https://doi.org/10.1007/s11224-011-9877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9877-x

Keywords

Navigation