Skip to main content
Log in

Docking, molecular dynamics simulation studies, and structure-based QSAR model on cytochrome P450 2A6 inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, we used molecular docking and molecular dynamics (MD) simulation studies to analyze the interactions of a series of naphthalene and non-naphthalene derivatives (n = 38) as potent inhibitors of cytochrome P450 2A6 (CYP2A6) and to construct a structure-based quantitative structure activity relationship (QSAR) model. A 6000 ps MD simulation in a cubic water box were employed to build 3D structure of the CYP2A6 in a water environment. After reaching the equilibrium, the most potent inhibitor (2-bromonaphthalene) was docked into the CYP2A6 to realize the binding site of the enzyme. The docking analysis showed that ππ interaction of the inhibitors with four phenylalanine residues at positions of 107, 111, 118, and 480 plays an important role in the activities of the inhibitors. Then, an additional 6000 ps MD simulation was performed on the complex of the CYP2A6–2-bromonaphthalene to explore the effect of the inhibitor on the stability of the protein–inhibitor complex. Radius of gyration values for CYP2A6 and CYP2A6–2-bromonaphthalene complex were 2.23 ± 0.01 and 2.21 ± 0.01 nm, respectively, which revealed that the structure of the CYP2A6 in the presence of 2-bromonaphthalene has not changed. Finally, all the inhibitors docked into the enzyme and the docked configuration of the inhibitors with the lowest free energy was used to calculate the most feasible descriptors. The selected descriptors were related to the inhibitory activities using multiple linear regression (MLR) and least squares support vector regression (LS-SVR) models. The Q 2 values for MLR and LS-SVR were 0.695 and 0.728, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Routh HB, Bhowmik KR, Parish JL, Parish LC (1998) Historical aspects of tobacco use and smoking. Clin Dermatol 16:39–544

    Article  Google Scholar 

  2. WHO Global Burden of Disease Report 2008 Geneva

  3. WHO Report on the Global Tobacco Epidemic, 2008

  4. Nicotine: A Powerful Addiction. Centers for Disease Control and Prevention. (http://www.cdc.gov/tobacco/quit/canquit.htm)

  5. Henningfield JE, Miyasato K, Jasinki DR (1985) Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther 234:1–12

    CAS  Google Scholar 

  6. Benowitz NL (1988) Drug therapy: pharmacologic aspects of cigarette smoking and nicotine addition. N Engl J Med 319:1318–1330

    Article  CAS  Google Scholar 

  7. Zins BJ, Sandborn WJ, Mays DC, Lawson GM, McKinney JA, Tremaine WJ, Mahoney DW, Zinsmeister AR, Hurt RD, Offord KP, Lipsky JJ (1997) Pharmacokinetics of nicotine tartrate after single-dose liquid enema, oral, and intravenous administration. J Clin Pharmacol 37:426–436

    CAS  Google Scholar 

  8. McMorrow MJ, Foxx RM (1983) Nicotine’s role in smoking: an analysis of nicotine regulation. Psychol Bull 93:302–327

    Article  CAS  Google Scholar 

  9. Russel SH (1987) Nicotine intake and its regulation by smokers. In: Martin WR, Vauhon GR, Iwamoto ET, David L (eds) Advances in behavioral biology: tobacco, smoking and nicotine. Plenum, New York, pp 25–50

    Chapter  Google Scholar 

  10. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashma K, Inoue K, Funae Y, Shimada N, Kamataki T, Kuroiwa Y (1996) Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 24:1212–1217

    CAS  Google Scholar 

  11. Messina ES, Tyndale RF, Sellers EM (1997) A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther 282:1608–1614

    CAS  Google Scholar 

  12. Fernandez-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rauto A, Pelkonen O, Huang JD, Evans WE, Idle JR, Gonzalez FJ (1995) A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A gnes and identification of variant CYP2A6 alleles. Am J Hum Genet 57:651–660

    CAS  Google Scholar 

  13. Pianezza ML, Sellers EM, Tyndale RF (1998) Nicotine metabolism defect reduces smoking. Nature 393:750

    Article  CAS  Google Scholar 

  14. Crespi CL, Penman BW, Leakey JA, Arlotto MP, Stark A, Parkinson A, Turner T, Steimel DT, Rudo K, Davies RL, Langenbach R (1990) Human cytochrome P450IIA3: cDNA sequence, role of the enzyme in the metabolic activation of promutagens, comparison to nitrosamine activation by human cytochrome P450IIE1. Carcinogenesis 11:1293–1300

    Article  CAS  Google Scholar 

  15. Yamazaki H, Inui Y, Yun CH, Guengerich FP, Shimada T (1992) Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco related nitrosamines in human liver microsomes. Carcinogenesis 13:1789–1794

    Article  CAS  Google Scholar 

  16. Visoni S, Meireles N, Monteiro L, Rossini A, Pinto LFR (2008) Different modes of inhibition of mouse Cyp2a5 and rat CYP2A3 by the food-derived 8-methoxypsoralen. Food Chem Toxicol 46:1190–1195

    Article  CAS  Google Scholar 

  17. Korhonen LE, Rahnasto M, Mähönen NJ, Wittekindt C, Poso A, Juvonen RO, Raunio H (2005) Predictive three-dimensional quantitative structure–activity relationship of cytochrome P450 1A2 inhibitors. J Med Chem 48:3808–3815

    Article  CAS  Google Scholar 

  18. Sun H, Scott DO (2010) Structure-based drug metabolism predictions for drug design. Chem Biol Drug Des 75:3–17

    Article  CAS  Google Scholar 

  19. de Groot MJ, Ekins S (2002) Pharmacophore modeling of cytochromes P450. Adv Drug Deliv Rev 54:367–383

    Article  Google Scholar 

  20. Poso A, Gynther J, Juvonen R (2001) A comparative molecular field analysis of cytochrome P450 2A5 and 2A6 inhibitors. J Comput Aided Mol Des 15:195–202

    Article  CAS  Google Scholar 

  21. Wang Y, Li Y, Wang B (2007) An in silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares. Int J Mol Sci 8:166–179

    Article  CAS  Google Scholar 

  22. Damme SV, Bultinck P (2008) Conceptual DFT properties-based 3D QSAR: analysis of inhibitors of the nicotine metabolizing CYP2A6 enzyme. J Comput Chem 30:1749–1757

    Article  Google Scholar 

  23. Leong MK, Chen YM, Chen HB, Chen PH (2009) Development of a new predictive model for interactions with human cytochrome P450 2A6 using pharmacophore ensemble/support vector machine (PhE/SVM) approach. Pharm Res 26:987–1000

    Article  CAS  Google Scholar 

  24. Rahnasto M, Raunio H, Poso A, Wittekindt C, Juvonen RO (2005) Quantitative structure–activity relationship analysis of inhibitors of the nicotine metabolizing CYP2A6 enzyme. J Med Chem 48:440–449

    Article  CAS  Google Scholar 

  25. Roy K, Roy PP (2009) Exploring QSAR and QAAR for inhibitors of cytochrome P450 2A6 and 2A5 enzymes using GFA and G/PLS techniques. Eur J Med Chem 44:1941–1951

    Article  CAS  Google Scholar 

  26. HyperChem, Release 7.0 for windows, Hypercube, Inc., 2002

  27. Yano JK, Hsu MH, Griffin KJ, Stout CD, Johnson EF (2005) Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat Struct Mol Biol 12:822–823

    Article  CAS  Google Scholar 

  28. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  29. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  30. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comput Chem 26:1701–1719

    Article  Google Scholar 

  31. Zhu Q, Vaughn MW (2005) Surface tension effect on transmembrane channel stability in a model membrane. J Phys Chem B 109:19474–19483

    Article  CAS  Google Scholar 

  32. van Gunsteren WF, Billeter SR, Eising AA, Hüenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS 96 manual and user guide, Switzerland

  33. Darden T, York D, Pedersen L (1993) Particle mesh Ewald-an NlogN method for Ewald sums in large systems J. Chem Phys 98:10089–10092

    CAS  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  35. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637–649

    Article  CAS  Google Scholar 

  36. Kennard EH (1963) Kinetic theory of gases. McGraw-Hill, New York, p 77

    Google Scholar 

  37. Huang K (1963) Statistical mechanics. Wiley, New York

    Google Scholar 

  38. Berendsen HJC, Postma JPM, Van Gunstetren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, The Netherlands, pp 331–342

    Google Scholar 

  39. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  40. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  41. Thompson MA (2004) ArgusLab 4.0.1. Planaria Software LLC, Seatle

    Google Scholar 

  42. Schuttelkopf AW, Van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  Google Scholar 

  43. www.talete.mi.it

  44. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297

    Google Scholar 

  45. Suykens JAK, Gestel JAK, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientifics, Singapore

    Book  Google Scholar 

  46. Niazi A, Sharifi S, Amjadi E (2008) Least-squares support vector machines for simultaneous voltammetric determination of lead and tin: a comparison between LS-SVM and PLS in voltammetric data. J Electroanal Chem 623:86–92

    Article  CAS  Google Scholar 

  47. Sridhar J, Jin P, Liu J, Foroozesh M, ChLK Stevens (2010) In silico studies of polyaromatic hydrocarbon inhibitors of cytochrome P450 enzymes 1A1, 1A2, 2A6, and 2B1. Chem Res Toxicol 23:600–607

    Article  CAS  Google Scholar 

  48. Hunter CA, Singh J, Thornton JM (1991) Pi–pi interactions: the geometry and energetics of phenylalanine–phenylalanine interactions in proteins. J Mol Biol 218:837–846

    Article  CAS  Google Scholar 

  49. Salt DW, Ajmani S, Crichton R, Livingstone DJ (2007) An improved approximation to the estimation of the critical F values in best subset regression. J Chem Inf Model 47:143–149

    Article  CAS  Google Scholar 

  50. Fatemi MH, Gharaghani S (2007) A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg Med Chem 15:7746–7754

    Article  CAS  Google Scholar 

  51. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  52. Balaban AT (1982) Highly discriminating distance-based topological index. Chem Phys Lett 89:399–404

    Article  CAS  Google Scholar 

  53. Bonchev D (1983) Information theoretic indices for characterization of chemical structures. RSP-Wiley, Chichester

    Google Scholar 

  54. Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692

    Article  CAS  Google Scholar 

  55. Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 2. Application of the novel 3D molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705

    Article  CAS  Google Scholar 

  56. Hemmer MC, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 19:151–164

    Article  CAS  Google Scholar 

  57. Palm K, Luthman K, Ungell AL, Strandlund G, Beigi F, Lundahl P, Artursson P (1998) Evaluation of dynamic polar molecular surface area as predictor of drug absorption: comparison with other computational and experimental predictors. J Med Chem 41:5382–5392

    Article  CAS  Google Scholar 

  58. Winiwarter S, Bonham NM, Ax F, Hallberg A, Lennernas H, KarlCn A (1998) Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem 41:4939–4949

    Article  CAS  Google Scholar 

  59. Ensafi AA, Hasanpour F, Khayamian T (2009) Simultaneous chemiluminescence determination of promazine and fluphenazine using support vector regression. Talanta 79:534–538

    Article  CAS  Google Scholar 

  60. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  61. Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzyński M, Worth AP (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22:795–804

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support of this work from the Research Council of Isfahan University of Technology (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taghi Khayamian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharaghani, S., Khayamian, T. & Keshavarz, F. Docking, molecular dynamics simulation studies, and structure-based QSAR model on cytochrome P450 2A6 inhibitors. Struct Chem 23, 341–350 (2012). https://doi.org/10.1007/s11224-011-9874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9874-0

Keywords

Navigation