Skip to main content
Log in

Theoretical study of the mechanism for the ClOO + NO reaction on the singlet potential energy surface

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A detailed quantum chemical study is performed on the mechanism of ClOO + NO reaction at the B3LYP/6-311+G (2d) level of theory combined with CCSD (T) single point energy calculation. The possible product channels for the reaction are obtained and discussed on the basis of the singlet [ClNO3] potential energy surface. The calculation indicates that the dominant product for the title reaction is ClO + NO2 by the direct dissociation of the initial adduct, and the formation of the other products is much less likely since they are unfavorable kinetically. A comparison is also made between the title reaction and the analogous reaction of FO2 + NO to gain a deeper insight into the mechanism of the XO2 + NO reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Porter G, Wright FJ (1953) Discuss Faraday Soc 14:23

    Article  Google Scholar 

  2. Vaida V, Solomon S, Richard EC, Ruhl E, Jefferson A (1989) Nature 342:405

    Article  CAS  Google Scholar 

  3. Molina LT, Molina MJ (1987) J Phys Chem 91:433

    Article  CAS  Google Scholar 

  4. Cox RA, Hayman GD (1988) Nature 332:796

    Article  CAS  Google Scholar 

  5. Arkell A, Schwager J (1967) J Am Chem Soc 89:5999

    Article  CAS  Google Scholar 

  6. Gole JL (1980) J Phys Chem 84:1333

    Article  CAS  Google Scholar 

  7. Jafri JA, Lengsfield BH, Bauschlicher CW, Philips DH (1985) J Chem Phys 83:1693

    Article  CAS  Google Scholar 

  8. Craven W, Knowles DB, Murrell JN, Vincent MA, Watts JD (1985) Chem Phys Lett 116:119

    Article  CAS  Google Scholar 

  9. Jensen F (1990) Chem Phys Lett 169:519

    Article  CAS  Google Scholar 

  10. Baer S, Hippler H, Rahn R, Siefke M, Seitzinger N, Troe J (1991) J Chem Phys 95:6463

    Article  CAS  Google Scholar 

  11. Byberg JR (1996) J Phys Chem 100:9247

    Article  CAS  Google Scholar 

  12. Holger SPM, Helge W (1993) J Phys Chem 97:10589

    Article  Google Scholar 

  13. Johnson K, Engdahl A, Nelander B (1993) J Phys Chem 97:9603

    Article  Google Scholar 

  14. Zhang JX, Pamela MA (1994) J Phys Chem 98:765

    Article  CAS  Google Scholar 

  15. Kohsuke S, Yoshihiro S, Yasuki E, Shinichi E, Simone A, Satoshi H, Masahiro K, Satoshi N, Yutaka M (2004) J Phys Chem A 108:8096

    Article  Google Scholar 

  16. Carsten LT, Philip RK, Søren JR (2000) J Am Chem Soc 122:12795

    Article  Google Scholar 

  17. Mauldin RL, Burkholder JB, Ravishankara AR (1992) J Phys Chem 96:2582

    Article  CAS  Google Scholar 

  18. Nicovich JM, Kreutter KD, Shackelford CJ, Wine PJ (1991) Chem Phys Lett 179:367

    Article  CAS  Google Scholar 

  19. Enami S, Hoshino Y, Ito Y, Hashimoto S, Kawasaki M, Timothy JW (2006) J Phys Chem A 110:3546

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03, Revision B.04. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

  21. Zhang JX, Hase WL (2010) J Phys Chem A 114:9635

    Article  CAS  Google Scholar 

  22. Plane JMC, Joseph DM, Allan BJ, Ashworth SH, Francisco JS (2006) J Phys Chem A 110:93

    Article  CAS  Google Scholar 

  23. Zhu RS, Lin MC (2003) J Chem Phys 118:8645

    Article  CAS  Google Scholar 

  24. Zhu RS, Lin MC (2005) ChemPhysChem 6:1514

    Article  CAS  Google Scholar 

  25. Goodarzi M, Piri F, Hajari N, Karimi L (2010) Chem Phys Lett 499:51

    Article  CAS  Google Scholar 

  26. Sun Y, Yao JZ, Sun M, Zhang H, Zhang ML (2009) J Mol Struct (THEOCHEM) 916:10

    Article  CAS  Google Scholar 

  27. Li Z, Friedl RR, Sander SP (1995) J Phys Chem 99:13445

    Article  CAS  Google Scholar 

  28. Sehested J, Sehested K, Nielsen OJ (1994) J Phys Chem 98:6731

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Harbin key Sci-tech project (No. 2010AA4BG004), the National Natural Science Foundation of China (NSFC No. 21001035) and Harbin Engineering University Fundamental Research Funding Project (No. 002100260727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Sun, M. Theoretical study of the mechanism for the ClOO + NO reaction on the singlet potential energy surface. Struct Chem 23, 107–114 (2012). https://doi.org/10.1007/s11224-011-9845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9845-5

Keywords

Navigation