Skip to main content
Log in

Scaling trend in diffusion coefficients of low generation G0–G3 PAMAM dendrimers in aqueous solution at high and neutral pH

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Aqueous solution diffusion coefficients for G0–G3 PAMAM dendrimers were determined from DOSY-NMR spectroscopy at high and neutral pH. The study was performed in a dilute regime and diffusion coefficients at infinite dilution (D 0) were estimated from the variation of diffusion coefficients with dendrimer concentration. Hydrodynamic radii (R h) for each dendrimer were estimated from D 0 using the Stoke–Einstein relationship at both pH. According to D 0 and R h values, the structure of G0–G1 PAMAM dendrimers is almost insensitive to pH variations, whereas G2–G3 PAMAM dendrimers undergo swelling at neutral pH, due to surface amino groups protonation. Experimental diffusion coefficients show a scaling trend with the number of dendrimer atoms (N), with scaling laws of the type \( D_{0} \propto N^{\alpha } \), where α takes values of −0.39 and −0.50 at pH 12 and 7, respectively. For the first time, experimental data accounts for the scaling behavior of aqueous diffusion coefficients for low generation PAMAM dendrimers, as previously reported from molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tomalia DA, Frechet JM (2005) Introduction to “Dendrimers and dendritic polymers”. Prog Polym Sci 30(3–4):217–219

    Article  CAS  Google Scholar 

  2. Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  CAS  Google Scholar 

  3. Matthews OA, Shipway AN, Stoddart JF (1998) Dendrimers—branching out from curiosities into new technologies. Prog Polym Sci 23(1):1–56

    Article  CAS  Google Scholar 

  4. Boas U, Heegaard PMH (2004) Dendrimers in drug research. Chem Soc Rev 33(1):43–63

    Article  CAS  Google Scholar 

  5. Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436

    Article  CAS  Google Scholar 

  6. Bielinska A, KukowskaLatallo JF, Johnson J, Tomalia DA, Baker JR (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24(11):2176–2182

    Article  CAS  Google Scholar 

  7. Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    Article  CAS  Google Scholar 

  8. Liu Y, Chen CY, Chen HL, Hong KL, Shew CY, Li X, Liu L, Melnichenko YB, Smith GS, Herwig KW, Porcar L, Chen WR (2010) Electrostatic swelling and conformational variation observed in high-generation polyelectrolyte dendrimers. J Phys Chem Lett 1(13):2020–2024

    Article  CAS  Google Scholar 

  9. Porcar L, Liu Y, Verduzco R, Hong KL, Butler PD, Magid LJ, Smith GS, Chen WR (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112(47):14772–14778

    Article  CAS  Google Scholar 

  10. Li TF, Hong K, Porcar L, Verduzco R, Butler PD, Smith GS, Liu Y, Chen WR (2008) Assess the intramolecular cavity of a PAMAM dendrimer in aqueous solution by small-angle neutron scattering. Macromolecules 41(22):8916–8920

    Article  CAS  Google Scholar 

  11. Porcar L, Hong KL, Butler PD, Herwig KW, Smith GS, Liu Y, Chen WR (2010) Intramolecular structural change of PAMAM dendrimers in aqueous solutions revealed by small-angle neutron scattering. J Phys Chem B 114(5):1751–1756

    Article  CAS  Google Scholar 

  12. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132

    Article  CAS  Google Scholar 

  13. Hobson LJ, Feast WJ (1999) Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer 40(5):1279–1297

    Article  CAS  Google Scholar 

  14. Shi X, Lesniak W, Islam MT, MuÑiz MC, Balogh LP, Baker JR Jr (2006) Comprehensive characterization of surface-functionalized poly(amidoamine) dendrimers with acetamide, hydroxyl, and carboxyl groups. Colloid Surf A 272(1–2):139–150

    Article  CAS  Google Scholar 

  15. Meltzer AD, Tirrell DA, Jones AA, Inglefield PT, Hedstrand DM, Tomalia DA (1992) Chain dynamics in poly(amidoamine) dendrimers: a study of carbon-13 NMR relaxation parameters. Macromolecules 25(18):4541–4548

    Article  CAS  Google Scholar 

  16. Meltzer AD, Tirrell DA, Jones AA, Inglefield PT (1992) Chain dynamics in poly(amidoamine) dendrimers: a study of proton NMR relaxation parameters. Macromolecules 25(18):4549–4552

    Article  CAS  Google Scholar 

  17. Lyulin SV, Darinskii AA, Lyulin AV, Michels MAJ (2004) Computer simulation of the dynamics of neutral and charged dendrimers. Macromolecules 37(12):4676–4685

    Article  CAS  Google Scholar 

  18. Maiti PK, Çağın T, Wang G, Goddard WA (2004) Structure of PAMAM dendrimers:  generations 1 through 11. Macromolecules 37(16):6236–6254

    Article  CAS  Google Scholar 

  19. Maiti PK, Çağın T, Lin S-T, Goddard WA (2005) Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules 38(3):979–991

    Article  CAS  Google Scholar 

  20. Baille WE, Malveau C, Zhu XX, Kim YH, Ford WT (2003) Self-diffusion of hydrophilic poly(propyleneimine) dendrimers in poly(vinyl alcohol) solutions and gels by pulsed field gradient NMR spectroscopy. Macromolecules 36(3):839–847

    Article  CAS  Google Scholar 

  21. Fritzinger B, Scheler U (2005) Scaling behaviour of PAMAM dendrimers determined by diffusion NMR. Macromol Chem Phys 206(13):1288–1291

    Article  CAS  Google Scholar 

  22. Gomez MV, Guerra J, Velders AH, Crooks RM (2008) (2008) NMR characterization of fourth-generation PAMAM dendrimers in the presence and absence of palladium dendrimer-encapsulated nanoparticles. J Am Chem Soc 131(1):341–350

    Article  Google Scholar 

  23. Gomez MV, Guerra J, Myers VS, Crooks RM, Velders AH (2009) Nanoparticle size determination by 1H NMR spectroscopy. J Am Chem Soc 131(41):14634–14635

    Article  CAS  Google Scholar 

  24. Pavan GM, Posocco P, Tagliabue A, Maly M, Malek A, Danani A, Ragg E, Catapano CV, Pricl S (2010) PAMAM dendrimers for siRNA delivery: computational and experimental insights. Chem Eur J 16(26):7781–7795

    Article  CAS  Google Scholar 

  25. Han M, Chen PQ, Yang XZ (2005) Molecular dynamics simulation of PAMAM dendrimer in aqueous solution. Polymer 46(10):3481–3488

    Article  CAS  Google Scholar 

  26. Maiti PK, Bagchi B (2009) Diffusion of flexible, charged, nanoscopic molecules in solution: size and pH dependence for PAMAM dendrimer. J Chem Phys 131(21):214901

    Article  Google Scholar 

  27. Johnson CS (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34(3–4):203–256

    Article  CAS  Google Scholar 

  28. Wu DH, Chen AD, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson Ser A 115(2):260–264

    Article  CAS  Google Scholar 

  29. Longsworth LG (1960) The mutual diffusion of light and heavy water. J Phys Chem 64(12):1914–1917

    Article  CAS  Google Scholar 

  30. Callaghan PT, Pinder DN (1981) Self-diffusion of random-coil polystyrene determined by pulsed field gradient nuclear magnetic resonance: dependence on concentration and molar mass. Macromolecules 14(5):1334–1340

    Article  CAS  Google Scholar 

  31. Chen ZY, Cai C (1999) Dynamics of starburst dendrimers. Macromolecules 32(16):5423–5434

    Article  CAS  Google Scholar 

  32. Rietveld IB, Bedeaux D (2000) Self-diffusion of poly(propylene imine) dendrimers in methanol. Macromolecules 33(21):7912–7917

    Article  CAS  Google Scholar 

  33. Karatasos K, Adolf DB, Davies GR (2001) Statics and dynamics of model dendrimers as studied by molecular dynamics simulations. J Chem Phys 115(11):5310–5318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank FONDECYT Grant 1080282 and Programa de Intercambio Académico, Universidad de La Laguna. We also thank to the Servicio de Resonancia Magnética Nuclear, Universidad de La Laguna, for allocating instrument time to this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Verónica A. Jiménez or Joel B. Alderete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, V.A., Gavín, J.A. & Alderete, J.B. Scaling trend in diffusion coefficients of low generation G0–G3 PAMAM dendrimers in aqueous solution at high and neutral pH. Struct Chem 23, 123–128 (2012). https://doi.org/10.1007/s11224-011-9844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9844-6

Keywords

Navigation