Skip to main content

Advertisement

Log in

Cyclic and ladder hydrogen bonded cyanamide oligomers: a density functional theory and many-body analysis approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

This work reports hydrogen bonding interaction in cyclic and ladder oligomers using density functional theory method. Many-body analysis technique has been used to study the nature of interactions between different molecules and their contribution to the binding energy of a respective hydrogen bonded oligomers. Hydrogen bonds in cyclic trimer to pentamer are stronger than those in corresponding ladder structures. Cyanamide monomer shows the lowest energy at B3LYP/aug-cc-pvdz level among different methods used here with the same basis set. The geometrical parameters for cyanamide monomer obtained at B3LYP/aug-cc-pvdz level are in excellent agreement with the experimental determinations. Cyclic structures are more stable than the ladder. In cyclic oligomers not only total two-body energies, but higher body energies also contribute significantly to the binding energy of a respective complex whereas in ladder, only total two-body energies contribute significantly and higher-body energies are almost negligible for cyanamide trimer to pentamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, Oxford

    Google Scholar 

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  4. Xantheas SS (1994) J Chem Phys 100:7523–7534

    Article  CAS  Google Scholar 

  5. Xantheas SS (2000) Chem Phys 258:225–231

    Article  CAS  Google Scholar 

  6. Xantheas SS, Dunning TH Jr (1993) J Chem Phys 99:8774–8792

    Article  CAS  Google Scholar 

  7. Kulkarni A, Ganesh V, Gadre SR (2004) J Chem Phys 121:5043–5050

    Article  CAS  Google Scholar 

  8. Chaudhari A, Lee SL (2004) J Chem Phys 120:7464–7469

    Article  CAS  Google Scholar 

  9. Chaudhari A, Sahu PK, Lee SL (2004) J Chem Phys 120:170–174

    Article  CAS  Google Scholar 

  10. Boo DW (2001) Bull Korean Chem Soc 22:693–698

    CAS  Google Scholar 

  11. Chaudhari A, Meraj G, Lee SL (2010) J Mol Mod 16:1559–1566

    Article  CAS  Google Scholar 

  12. Milet A, Moszynski R, Wormer PES, van der Avoird AJ (1999) J Phys Chem A 103:6811–6819

    Article  CAS  Google Scholar 

  13. Chaudhari A, Lee SL (2010) J Theor Comput Chem 9:177–187

    Article  CAS  Google Scholar 

  14. Chaudhari A, Sahu PK, Lee SL (2005) Int J Quant Chem 101:67–72

    Article  CAS  Google Scholar 

  15. Chaudhari A, Sahu PK, Lee SL (2004) J Mol Struc Theochem 683:115–119

    Article  CAS  Google Scholar 

  16. Chaudhari A, Lee SL (2005) Chem Phys 310:281–285

    Article  CAS  Google Scholar 

  17. Chaudhari A, Lee SL (2005) Int J Quant Chem 102:174–177

    Article  CAS  Google Scholar 

  18. Mierzwicki K, Latajka Z (2000) Chem Phys Lett 325:465–472

    Article  CAS  Google Scholar 

  19. Chaudhari A, Lee SL (2005) Int J Quant Chem 102:106–111

    Article  CAS  Google Scholar 

  20. Chaudhari A (2010) Int J Quant Chem 110:1092–1099

    CAS  Google Scholar 

  21. Chaudhari A, Naganathappa M, Shinde MN, Kumbharkhane AC (2011) Int J Quant Chem 111:2972–2979

    Article  CAS  Google Scholar 

  22. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071–4098

    Article  CAS  Google Scholar 

  23. Ilhan F, Galow TH, Gray M, Clavier G, Rotello VM (2000) J Am Chem Soc 122:5895–5896

    Article  CAS  Google Scholar 

  24. Pourcain C, Griffin AC (1995) Macromolecules 28:4116–4121

    Article  Google Scholar 

  25. Vera F, Almuzar C, Orera I, Barbera J, Oriol L, Serrano JL, Sierra T (2008) J Polym Sci Part A 46:5528–5541

    Article  CAS  Google Scholar 

  26. Ruokolainen J, Torkkeli M, Serimaa R, Komanschek E, Brinke GT, Ikkala O (1997) Macromolecules 30:2002–2007

    Article  CAS  Google Scholar 

  27. Sheen YC, Lu CH, Huang CF, Kuo SW, Chang FC (2008) Polymer 49:4017–4024

    Article  CAS  Google Scholar 

  28. Ruokolainen J, Saariaho M, Ikkala O, Brinke GT, Thomas EL, Torkkeli M, Serimaa R (1999) Macromolecules 32:1152–1158

    Article  CAS  Google Scholar 

  29. Wu X, Zhang G, Zhang H (1998) Macromol Chem Phys 199:2101–2105

    CAS  Google Scholar 

  30. Bladon P, Griffin AC (1993) Macromolecules 26:6604–6610

    Article  CAS  Google Scholar 

  31. Bouteiller L (2007) Adv Polym Sci 27:79–112

    Article  Google Scholar 

  32. Shih RS, Lu CH, Kuo SW, Chang FC (2010) J Phys Chem C 114:2855–2862

    Article  Google Scholar 

  33. Kriz J, Dybal J, Brus J (2006) J Phys Chem B 110:18338–18346

    Article  CAS  Google Scholar 

  34. Kriz J, Dybal J (2005) J Phys Chem B 109:13436–13444

    Article  CAS  Google Scholar 

  35. Kuo SW, Tung PH, Chang FC (2006) Macromolecules 39:9388–9395

    Article  CAS  Google Scholar 

  36. Kuo SW, Tung PH, Lia CL, Jeoing KU, Chang FC (2008) Macromol Rapid Commun 29:229–233

    Article  CAS  Google Scholar 

  37. Kuo SW, Tung PH, Chang FC (2009) Eur Polym J 45:1924–1934

    Article  CAS  Google Scholar 

  38. Rakotondradany F, Whitehead MA, Leburs AM, Sleiman HF (2003) Chem Eur J 9:4771–4780

    Article  CAS  Google Scholar 

  39. Berl V, Huc I, Khoury RG, Krische MJ, Lehn JM (2000) Nature 407:720–723

    Article  CAS  Google Scholar 

  40. Berl V, Schmutz M, Krische MJ, Khoury RG, Lehn JM (2002) Chem Eur J 8:1227–1244

    Article  CAS  Google Scholar 

  41. Lagowski JB (2002) J Mol Struct 589–590:125–137

    Google Scholar 

  42. Hassan S, Mohammmad RN (2003) J Mol Struct 626:143–158

    Google Scholar 

  43. Gambi A, Giumanini AG, Strazzolini P (2001) J Mol Struct 536:9–16

    CAS  Google Scholar 

  44. Malysheva L, Klymenko Y, Onipko A, Valiokas R, Licedber B (2003) Chem Phys Lett 370:451–459

    Article  CAS  Google Scholar 

  45. Balbas A, Gonzales Tejera MJ, Tortajada J (2001) J Mol Struct 572:141–150

    Google Scholar 

  46. Groves C, Lewars E (2000) J Mol Struct 530:265–279

    CAS  Google Scholar 

  47. Pires MM, DeTuri VF (2007) J Chem Theor Comput 3:1073–1082

    Article  CAS  Google Scholar 

  48. Wu H, Chaudhari A, Lee SL (2005) J Comput Chem 26:1543–1564

    Article  CAS  Google Scholar 

  49. Sengwa RJ, Kaur K, Chaudhari R (2000) Polym Int 49:599–608

    Article  CAS  Google Scholar 

  50. Sengwa RJ, Kaur K (2000) Polym Int 49:1314–1320

    Article  CAS  Google Scholar 

  51. Sengwa RJ (2004) Polym Int 53:744–748

    Article  CAS  Google Scholar 

  52. Sengwa RJ (1998) Polym Int 45:43–46

    Article  CAS  Google Scholar 

  53. Sengwa RJ, Chaudhari R (2001) Polym Int 50:433–441

    Article  CAS  Google Scholar 

  54. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, Oxford, p. 341

  55. Moffat JB, Vogt C (1970) J Mol Spectrosc 33:494–499

    Article  CAS  Google Scholar 

  56. Riggs NV, Radom L (1985) Aust J Chem 38:835–840

    Article  CAS  Google Scholar 

  57. Saebo S, Farnell L, Riggs NV, Radom L (1984) J Am Chem Soc 106:5047–5051

    Article  CAS  Google Scholar 

  58. Thompson C, Glidewell C (1983) J Comput Chem 4:1–8

    Article  Google Scholar 

  59. Vincent MA, Dykstra CE (1980) J Chem Phys 73:3838–3842

    Article  CAS  Google Scholar 

  60. Ichikawa K, Hamada Y, Sugawara Y, Tsuboi M, Kato S, Morokuma K (1982) Chem Phys 72:301–312

    Article  CAS  Google Scholar 

  61. Daoudi A, Pouchan C, Sauvaitre H (1982) Chem Phys Lett 91:477–483

    Article  CAS  Google Scholar 

  62. Helgaker TU, Klewe B (1988) Acta Chem Scand A 42:269–272

    Article  Google Scholar 

  63. Kapellos ST, Mavridis A (1993) J Mol Struct 279:151–156

    Google Scholar 

  64. Denner L, Luger P, Buschmann J (1988) Acta Crystallogr C44:1979–1981

    CAS  Google Scholar 

  65. Brown RD, Godfrey PD, Kleibomer B (1985) J Mol Spectrosc 114:257–273

    Article  CAS  Google Scholar 

  66. Birk M, Winnewisser M (1986) Chem Phys Lett 123:382–385

    Article  CAS  Google Scholar 

  67. Birk M, Winnewisser M (1993) J Mol Spectrosc 159:69–78

    Article  CAS  Google Scholar 

  68. Kwon CH, Lee JH, Kim HL (2007) Bull Korean Chem Soc 28:1485–1488

    Article  CAS  Google Scholar 

  69. Lee JH, Kang TY, Hwang H, Kwon CH, Kim HL (2008) Bull Korean Chem Soc 29:1685–1688

    Article  CAS  Google Scholar 

  70. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  71. Valiron P, Mayer I (1997) Chem Phys Lett 275:46–55

    Article  CAS  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, MontgomeryJA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES and Pople JA, (2003) Gaussian03. Gaussian Inc., Pittsburgh

  73. Tyler JK, Sheridan J, Costain CC (1972) J Mol Spectrosc 43:248–261

    Article  CAS  Google Scholar 

  74. Brown RD, Godfrey PD, Kleibomer B (1985) J Mol Spectrosc 14:257–273

    Article  Google Scholar 

  75. Fletcher WH, Brown FB (1963) J Chem Phys 39:10

    Article  Google Scholar 

  76. Hector R (1956) The Infrared spectra and structure of cyanamide (part I). The infrared spectra of formamide, N,N-dideuteroformamide and N-methylformamide (Part II), Ph.D. Thesis, California institute of Technology Pasadena, California

  77. Bernstein MP, Bauschlicher CW Jr, Sandford SA (2004) Adv Space Res 33:40–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharat, B., Deshmukh, V. & Chaudhari, A. Cyclic and ladder hydrogen bonded cyanamide oligomers: a density functional theory and many-body analysis approach. Struct Chem 23, 37–45 (2012). https://doi.org/10.1007/s11224-011-9841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9841-9

Keywords

Navigation