Skip to main content
Log in

Quantum chemical investigation on structures of pyrrolic amides functionalized (5,5) single-walled carbon nanotube and their binding with halide ions

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures of mono- and di-podal pyrrolic amides functionalized (5,5) single-walled carbon nanotubes (SWCNTs) and their complexes with fluoride, chloride, and bromide ions were obtained using the two-layered ONIOM(MO:MO) and density functional theory (DFT) methods. The binding energies between halide ions and all the receptors and their charge transfers were obtained using DFT method. The computational results indicate that the pyrrolic amide functionalized on the SWCNT affects to the density of state and energy gap of SWCNT. All the free receptors, mono-, di-podal pyrrolic amides and the functionalized SWCNT forming the strongest complexes were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  CAS  Google Scholar 

  2. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Chem Soc Rev 38:2214

    Article  CAS  Google Scholar 

  3. Michael J (2006) Carbon nanotubes: properties and applications. CRC Press, Taylor and Francis Group, LLC, Boca Raton

    Google Scholar 

  4. Schluter AD (2005) Functional molecular nanostructures. Springer, New York

    Google Scholar 

  5. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Nanotechnology 18(41):412001

    Article  Google Scholar 

  6. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Chem Commun 5:571

    Article  Google Scholar 

  7. Chu H, Wei L, Cui R, Wang J, Li Y (2010) Coord Chem Rev 254:1117

    Article  CAS  Google Scholar 

  8. Mercuri F, Sgamellotti A (2007) Inorg Chim Acta 360:785

    Article  CAS  Google Scholar 

  9. Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley, England

    Book  Google Scholar 

  10. Gale PA (2011) Chem Comm 47:82

    Article  CAS  Google Scholar 

  11. Sessler JL, Gelloz GB, Gale PA, Camiolo S, Anslyn EV, Anzenbacher P Jr, Furuta H, Kirkovits GJ, Lynch VM, Maeda H, Morosini P, Scherer M, Shriver J, Zimmerman RS (2003) Polyhedron 22:2963

    Article  CAS  Google Scholar 

  12. Sessler JL, Camiolo S, Gale PA (2003) Coord Chem Rev 240:17

    Article  CAS  Google Scholar 

  13. Bondy CR, Loeb SJ (2003) Coord Chem Rev 240:77

    Article  CAS  Google Scholar 

  14. Zhang Z, Schreiner PR (2009) Chem Soc Rev 38:1187

    Article  CAS  Google Scholar 

  15. Yin Z, Li Z, Yu A, He J, Cheng JP (2004) Tetrahedron Lett 45:6803

    Article  CAS  Google Scholar 

  16. Zhenming Y, Shangyuan L (2009) Chin J Chem 27:43

    Article  Google Scholar 

  17. Chidawanyika W, Nyokong W (2010) Carbon 48:2831

    Article  CAS  Google Scholar 

  18. Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) J Am Chem Soc 125:8566

    Article  CAS  Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:385

    Google Scholar 

  21. Maseras F, Morokuma K (1995) J Comput Chem 16:1170

    Article  CAS  Google Scholar 

  22. Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959

    Article  CAS  Google Scholar 

  23. Stewart JJP (1989) J Comput Chem 10:209

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2008) Gaussian 03, revision E.01. Gaussian, Inc, Wallingford

    Google Scholar 

  25. Flükiger P, Lüthi HP, Portmann S, Weber J (2000) Molekel 4.3. Swiss Center for Scientific Computing, Manno

    Google Scholar 

  26. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the Research Affairs, Kosumwittayasan School, Maha Sarakham Province, for partial support of this research and the facility provided by Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Mahasarakham University. The Institute for the Promotion of Teaching Science and Technology, Thailand, for financial support is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithaya Ruangpornvisuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetasang, S., Keawwangchai, S., Wanno, B. et al. Quantum chemical investigation on structures of pyrrolic amides functionalized (5,5) single-walled carbon nanotube and their binding with halide ions. Struct Chem 23, 7–15 (2012). https://doi.org/10.1007/s11224-011-9839-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9839-3

Keywords

Navigation