Skip to main content
Log in

Analogy between sulfuryl and phosphino groups: the aromaticity of thiophene-oxide

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Sulfur in thiophene-oxide is pyramidal, thus this heterocycle shows structural similarities with phosphole. The aromaticity measures (e.g., ISEc = 1.1 kcal/mol; NICS(0) = −5.2) are also comparable (for phosphole ISEc = −2.7 kcal/mol; NICS(0) = −5.4) indicating a borderline non-aromatic/slightly aromatic behavior. The extent of aromaticity is also similar—and high—for the planar transition structures of the inversion motion (thiophene-oxide: ISEc = −20.4 kcal/mol; NICS(0) = −18.7 and phosphole ISEc = −17.7 kcal/mol; NICS(0) = −16.2). This behavior can be rationalized considering the ylidic description of the sulfuryl bond, where the sulfur atom carries a positive charge, which makes it isoelectronic with phosphorus. The similar inversion barriers of the corresponding XH3 (X = N, P, As) and H2Y=O (Y = O, S, Se) species also support this analogy. While no substituents were found, which would make planar thiophene-oxide a viable synthetic target, a planar six-membered heterocycle containing a boron and a sulfuryl unit is suggested for synthetic realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schleyer PvR (2001) Chem Rev (Editorial) 101:1115

    Article  CAS  Google Scholar 

  2. Balaban AT, Oniciu DC, Katritzky AR (2004) Chem Rev 104:2777

    Article  CAS  Google Scholar 

  3. Cyranski MK (2005) Chem Rev 105:3773

    Article  CAS  Google Scholar 

  4. Schleyer PvR (2005) Chem Rev (Editorial) 105:3433

    Article  CAS  Google Scholar 

  5. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842

    Article  CAS  Google Scholar 

  6. Johansson MP, Jusélius J (2005) Lett Org Chem 2:469

    Article  CAS  Google Scholar 

  7. Nyulászi L, Hollóczki O, Lescop O, Hissler M, Réau R (2006) Org Biomol Chem 4:996

    Article  Google Scholar 

  8. Egan W, Tang R, Zon G, Mislow K (1971) J Am Chem Soc 93:6205

    Article  CAS  Google Scholar 

  9. Schaefer W, Schweig A, Mathey F (1976) J Am Chem Soc 98:407

    Article  CAS  Google Scholar 

  10. Schleyer PvR, Freeman PK, Jiao H, Goldfuss B (1995) Angew Chem Int Ed 34:337

    Article  CAS  Google Scholar 

  11. Delare D, Dransfeld A, Nguyen MT, Vanquickenborne LG (2000) J Org Chem 63:2631

    Article  Google Scholar 

  12. Nyulászi L (2000) Tetrahedron 56:79

    Article  Google Scholar 

  13. Mathey F (ed) (2001) Phosphorous-carbon heterocyclic chemistry: the rise of a new domain. Pergamon, Amsterdam

    Google Scholar 

  14. Nyulászi L (2001) Chem Rev 101:1229

    Article  Google Scholar 

  15. Mattmann E, Mathey F, Sevin A, Frison G (2002) J Org Chem 67:1208

    Article  CAS  Google Scholar 

  16. Dransfeld A, Nyulászi L, Schleyer PvR (1998) Inorg Chem 37:4413

    Article  CAS  Google Scholar 

  17. Schleyer PvR, Puhlhofer F (2002) Org Lett 4:2873

    Article  CAS  Google Scholar 

  18. Nakayama J (2000) Bull Chem Soc Jpn 73:1

    Article  CAS  Google Scholar 

  19. Dansette PM, Amar C, Smith C, Pons C, Mansuy D (1991) Biochem Pharmacol 39:911

    Article  Google Scholar 

  20. Dansette PM, Amar C, Valadon P, Pons C, Beaune PH, Mansuy D (1991) Biochem Pharmacol 40:553

    Article  Google Scholar 

  21. Mansuy D, Valadon P, Erdelmeyer I, Lopez-Garcia P, Amar C, Girault JP, Dansette PM (1991) J Am Chem Soc 113:7825

    Article  CAS  Google Scholar 

  22. Treiber A, Dansette PM, El Amri H, Girault JP, Ginderow D, Mornon JP, Mansuy D (1997) J Am Chem Soc 119:1565

    Article  CAS  Google Scholar 

  23. Fagan PJ, Tilley TD (1988) J Am Chem Soc 110:2310

    Article  CAS  Google Scholar 

  24. Davies W, Gamble N, James FC, Savige W (1952) Chem Ind (London) 804

  25. Davies W, James FC (1954) J Chem Soc 15

  26. Mock WL (1970) J Am Chem Soc 92:7610

    Article  CAS  Google Scholar 

  27. Li Y, Thiemann T, Sawada T, Mataka S, Tashiro M (1997) J Org Chem 62:7926

    Article  CAS  Google Scholar 

  28. Stoyanovich FM, Karpenko RG, Gorushinka GI, Gol’dfrab YL (1972) Tetrahedron 28:5017

    Article  CAS  Google Scholar 

  29. Jenks WS, Matsungana N, Gordon M (1996) J Org Chem 61:1275

    Article  CAS  Google Scholar 

  30. Amato JS, Karády S, Reamer RA, Schlegel HB, Springer JP, Weinstock LM (1982) J Am Chem Soc 104:1375

    Article  CAS  Google Scholar 

  31. Pouzet P, Erdelmeier I, Ginderow P, Mornon JP, Dansette DM, Mansuy D (1995) J Chem Soc Chem Commun 473

  32. Meier-Brocks F, Weiss EJ (1993) Organomet Chem 453:33

    Article  CAS  Google Scholar 

  33. Chesnut DB, Quin LD (2004) J Comp Chem 25:734

    Article  CAS  Google Scholar 

  34. Mathey F (1988) Chem Rev 88:429

    Article  CAS  Google Scholar 

  35. Hashmall JA, Horak V, Khoo LE, Quicksall CO, Sun MK (1981) J Am Chem Soc 103:289

    Article  CAS  Google Scholar 

  36. Nyulászi L (1995) J Phys Chem 99:586

    Article  Google Scholar 

  37. Pelloni S, Lazaretti P (2007) Theor Chem Acc 118:89

    Article  CAS  Google Scholar 

  38. Nyulászi L (1996) J Phys Chem 100:6194

    Article  Google Scholar 

  39. Glukhotsev MN, Dransfeld A, Schleyer PvR (1996) J Phys Chem 100:13447

    Article  Google Scholar 

  40. Nyulászi L (1996) Inorg Chem 35:4690

    Article  Google Scholar 

  41. Wang L, Wang HJ, Dong WB, Qing YG, Lin L (2007) Struct Chem 18:25

    Article  Google Scholar 

  42. Keglevich G, Böcskei Z, Keserű GM, Ujszászy K, Quin LD (1997) J Am Chem Soc 119:5095

    Article  CAS  Google Scholar 

  43. Nyulászi L, Keglevich Gy, Quin L (1996) J Org Chem 61:7808

    Article  Google Scholar 

  44. Nyulászi L, Soós L, Keglevich Gy (1998) J Organomet Chem 566:29

    Article  Google Scholar 

  45. Cloke FGN, Hitchcock PB, Hunnable P, Nixon JF, Nyulászi L, Niecke E, Thelen V (1998) Angew Chem Int Ed 37:1083

    Article  CAS  Google Scholar 

  46. Ionkin AS, Marshall WJ, Fish BM, Schiffhauer MF, Davidson F, McEwen CN, Keys DE (2007) Organometallics 26:5050

    Article  CAS  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision E.01. Gaussian, Inc., Pittsburgh

    Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  50. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  51. Gordy W (1947) J Chem Phys 15:305

    Article  CAS  Google Scholar 

  52. Bird CW (1985) Tetrahedron 41:1409

    Article  CAS  Google Scholar 

  53. Nyulászi L, Várnai P, Veszprémi T (1995) J Mol Struct (THEOCHEM) 358:55

    Article  Google Scholar 

  54. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NvE (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  55. Schleyer PvR, Manoharan M, Wang ZX, Kiran B, Jiao H, Puchta R, Hommes NvE (2001) Org Lett 3:2465

    Article  CAS  Google Scholar 

  56. Hollóczki O, Nyulászi L (2008) J Org Chem 73:4794

    Article  Google Scholar 

  57. Reed AE, Schleyer PvR (1990) J Am Chem Soc 112:1435

    Article  Google Scholar 

  58. Magnusson E (1990) J Am Chem Soc 112:7940

    Article  CAS  Google Scholar 

  59. NH3: Swaken JD, Ibers JA (1962) J Chem Phys 36:1914

  60. PH3: Lehn JM Munsch B. (1969) Chem Commun 1327

  61. Léonard C, Carter S, Handy NC (2003) Chem Phys Lett 370:360

    Article  Google Scholar 

  62. Schwerdtfeger P, Laakkonen L, Pyykkö P (1992) J Chem Phys 96:6807

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from New Szechenyi PlanTAMOP-4.2.2/B-10/1-2010-0009 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Nyulászi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollóczki, O., Nyulászi, L. Analogy between sulfuryl and phosphino groups: the aromaticity of thiophene-oxide. Struct Chem 22, 1385–1392 (2011). https://doi.org/10.1007/s11224-011-9834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9834-8

Keywords

Navigation