Skip to main content
Log in

A supramolecular complex based on poly-Keggin-anion chains: synthesis, structure characterization, and conductivity

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A proton-conductive supramolecular complex, {[Cu(H2O)8][H(H2O)3](HINO)4(PMo12O40)} n , was constructed by a self-assembly of H+(H2O)3 clusters, [Cu(H2O)8]2+ clusters, [PMo12O40]3− anions, and isonicotinic acid N-oxide (HINO). Single-crystal X-ray diffraction analysis at 293 K revealed that the complex presented the three-dimensional (3D) supramolecular framework built from non-covalent interactions. Interestingly, [PMo12O40]3− anions self-assembled into poly-Keggin-anion chains in the supramolecular framework. Thermogravimetric analysis shows no weight loss in the temperature range of 20–100 °C, indicating that all water molecules in the unit structure are not easily lost below 100 °C. Surprisingly, the proton conductivity of the complex in the temperature range of 85–100 °C under 98% RH condition reached good proton conductivity of 10−3 S cm−1. A possible mechanism of the proton conduction was proposed according to the experimental results.

Graphical Abstract

A good proton-conductive supramolecular complex was built from non-covalent interactions among HINO molecules, [Cu(H2O)8]2+ and H+(H2O)3 clusters, and [PMo12O40]3− anions, as well as its structure was determined by using single-crystal X-ray diffraction data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wood BC, Marzari N (2007) Phys Rev B 76:134301

    Article  Google Scholar 

  2. Yu R, Jonghe LCD (2007) J Phys Chem C 111:11003

    Article  CAS  Google Scholar 

  3. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637

    Article  CAS  Google Scholar 

  4. Nakamura O, Kodama T, Ogino I, Miyake Y (1979) Chem Lett 17

  5. Casciola M, Constantino U (1986) Solid State Ionics 20:69

    Article  CAS  Google Scholar 

  6. Misono M (2001) Chem Commun 1141

  7. Slade RCT, Barker J, Pressman HA, Strange JH (1988) Solid State Ionics 28–30:594

    Article  Google Scholar 

  8. Katsoulis DE (1998) Chem Rev 98:359

    Article  CAS  Google Scholar 

  9. Malers JL, Sweikart MA, Horan JL, Turner JA, Herring AH (2007) J Power Sources 172:83

    Article  CAS  Google Scholar 

  10. Herring AM (2006) Polym Rev 46:245

    CAS  Google Scholar 

  11. Alberti G, Casciola M, Costantino U, Peraio A, Rega T (1995) J Mater Chem 5:1809

    Article  CAS  Google Scholar 

  12. Alberti G, Casciola M (2001) Solid State Ionics 145:3

    Article  CAS  Google Scholar 

  13. Sang XG, Wu QY, Pang WQ (2003) Mater Chem Phys 82:405

    Article  CAS  Google Scholar 

  14. Honma I, Nomura S, Nakajima H (2001) J Memb Sci 185:83

    Article  CAS  Google Scholar 

  15. Kim JD, Honma I (2005) Solid State Ionics 176:547

    Article  CAS  Google Scholar 

  16. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Memb Sci 212:263

    Article  CAS  Google Scholar 

  17. Tazi B, Savadogo O (2000) Electrochim Acta 45:4329

    Article  CAS  Google Scholar 

  18. Kozhevnikov IV (2007) J Mol Catal A Chem 262:86

    Article  CAS  Google Scholar 

  19. Ramani V, Kunz HR, Fenton JM (2004) J Memb Sci 232:31

    Article  CAS  Google Scholar 

  20. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403

    Article  CAS  Google Scholar 

  21. Verma A, Scott K (2010) J Solid State Electrochem 14:213

    Article  CAS  Google Scholar 

  22. Li MQ, Shao ZG, Scott K (2008) J Power Sources 183:69

    Article  CAS  Google Scholar 

  23. Claude RD, Michel F, Raymonde F, Rene T (1983) Inorg Chem 22:207

    Article  Google Scholar 

  24. Simapson PG, Vinciguerra A, Quagliano JV (1963) Inorg Chem 2:282

    Article  Google Scholar 

  25. Wu QY, Zhao SL, Wang JM, Zhang JQ (2007) J Solid State Electrochem 11:240

    Article  CAS  Google Scholar 

  26. SMART and SAINT (1996) Area detector control and integration software. Siemens Analytical X-ray Systems, Inc., Madison, WI

  27. Sheldrick GM (1997) SHELXTL V5.1, software reference manual. Bruker AXS, Inc., Madison, WI

    Google Scholar 

  28. Wei ML, He C, Hua WJ, Duan CY, Li SH, Meng QJ (2006) J Am Chem Soc 128:13318

    Article  CAS  Google Scholar 

  29. Wei ML, He C, Sun QZ, Meng QJ, Duan CY (2007) Inorg Chem 46:5957

    Article  CAS  Google Scholar 

  30. Duan CY, Wei ML, Guo D, He C, Meng QJ (2010) J Am Chem Soc 132:3321

    Article  CAS  Google Scholar 

  31. Wei ML, Xu HY, Sun RP (2009) J Coord Chem 62:1989

    Article  CAS  Google Scholar 

  32. Wei ML, Zhuang PF, Li HH, Yang YH (2011) Eur J Inorg Chem 1473

  33. Alizadeh MH, Eshtiagh-Hosseini H, Mirzaei M, Salimi AR, Razavi H (2008) Struct Chem 19:155–164

    Article  CAS  Google Scholar 

  34. Sadakiyo M, Yamada T, Kitagawa H (2009) J Am Chem Soc 131:9906

    Article  CAS  Google Scholar 

  35. England WA, Cross MG, Hamnett A, Wiseman PJ, Goodenough JB (1980) Solid State Ionics 1:231–249

    Article  CAS  Google Scholar 

  36. Kanda Y, Lee KY, Nakata S, Asaoka S, Misono M (1988) Chem Lett 139

  37. Yang J, Janik MJ, Ma D, Zheng A, Zhang M, Neurock M, Davis RJ, Ye C, Deng F (2005) J Am Chem Soc 127:18274

    Article  CAS  Google Scholar 

  38. Slade RCT, Hardwick A, Dickens PG (1983) Solid State Ionics 9–10:1093

    Article  Google Scholar 

  39. Supplit R, Sugawara A, Peterlik H, Kikuchi R, Okubo T (2010) Eur J Inorg Chem 3993

  40. Janic MJ, Davis RJ, Neurock M (2005) J Am Chem Soc 127:5238

    Article  Google Scholar 

  41. Hayashi EG, Moffat JB (1983) Catal J 83:192

    Article  CAS  Google Scholar 

  42. Kreuer KD, Rabenau A, Weppner W (1982) Angew Chem Int Ed 21:208

    Google Scholar 

  43. Agmon N (1995) Chem Phys Lett 244:456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 20971038), the Natural Science Foundation of the Education Department of Henan Province (no. 2009A150015), and the Science Foundation for Youths of Henan Normal University (2008qk10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Lin Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 566 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, ML., Li, HH., Wang, XX. et al. A supramolecular complex based on poly-Keggin-anion chains: synthesis, structure characterization, and conductivity. Struct Chem 23, 129–136 (2012). https://doi.org/10.1007/s11224-011-9790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9790-3

Keywords

Navigation