Skip to main content
Log in

Structural variations and electronic substituent effects in phenylcubane derivatives: a quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Electronic substituent effects in 4-substituted 1-phenylcubane derivatives, Ph–C8H6–X, have been investigated from the structural changes caused by the substituent X. The molecular structures of 34 derivatives with charged or dipolar substituents have been determined from quantum chemical calculations at the HF/6-31G* and B3LYP/6-311++G** levels of theory. Geometrical variations caused by substitution appear both in the cubane framework and in the benzene ring, but the two kinds of changes show no correlation. The rather small changes in the benzene ring geometry are caused by long-range polar effects (field effects), while the larger changes in the cubane cage are controlled primarily by electronegativity effects. A structural parameter measuring the long-range polar effect of the substituent, S CUBF , has been derived from the geometry of the phenyl group acting as a probe. This parameter correlates well with the calculated gas-phase acidities of 4-substituted cubane-1-carboxylic acids, HOOC–C8H6–X, and with other indicators of long-range polar effects obtained from bicyclo[2.2.2]octane derivatives. The correlations can further be improved by introducing a resonance parameter as an additional explanatory variable. This indicates that the electron delocalization resulting from hyperconjugative interactions between substituent and cage modifies the long-range polar effect of the substituent. Strong hyperconjugative interactions between some charged substituents and the cubane cage result in remarkable variations in the cage geometry, superimposed onto those ascribed to electronegativity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Domenicano A, Murray-Rust P, Vaciago A (1983) Acta Crystallogr B 39:457–468

    Article  Google Scholar 

  2. Campanelli AR, Domenicano A, Ramondo F (2003) J Phys Chem A 107:6429–6440

    Article  CAS  Google Scholar 

  3. Campanelli AR, Domenicano A, Ramondo F, Hargittai I (2004) J Phys Chem A 108:4940–4948

    Article  CAS  Google Scholar 

  4. Campanelli AR, Domenicano A, Ramondo F (2006) J Phys Chem A 110:10122–10129

    Article  CAS  Google Scholar 

  5. Campanelli AR, Domenicano A, Piacente G, Ramondo F (2010) J Phys Chem A 114:5162–5170

    Article  CAS  Google Scholar 

  6. Eaton PE, Cole TW Jr (1964) J Am Chem Soc 86:962–964

    Article  CAS  Google Scholar 

  7. Eaton PE, Cole TW Jr (1964) J Am Chem Soc 86:3157–3158

    Article  CAS  Google Scholar 

  8. Griffin GW, Marchand AP (1989) Chem Rev 89:997–1010

    Article  CAS  Google Scholar 

  9. Pulay P (1969) Mol Phys 17:197–204

    Article  CAS  Google Scholar 

  10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT

  11. Ponec R, Van Damme S (2007) J Phys Org Chem 20:662–670

    Article  CAS  Google Scholar 

  12. Macchiagodena M (2008) M.Sc. Thesis, University of L’Aquila

  13. Adcock W, Trout NA (1999) Chem Rev 99:1415–1435

    Article  CAS  Google Scholar 

  14. Katritzky AR, Topsom RD (1977) Chem Rev 77:639–658

    Article  CAS  Google Scholar 

  15. Koppel IA, Mishima M, Stock LM, Taft RW, Topsom RD (1993) J Phys Org Chem 6:685–689

    Article  CAS  Google Scholar 

  16. Della EW, Head NJ (1995) J Org Chem 60:5303–5313

    Article  CAS  Google Scholar 

  17. Wiberg KB, Bader RFW, Lau CDH (1987) J Am Chem Soc 109:985–1001

    Article  CAS  Google Scholar 

  18. Walsh AD (1947) Discuss Faraday Soc 2:18–25

    Article  Google Scholar 

  19. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  20. Bent HA (1961) J Inorg Nucl Chem 19:43–50

    Article  CAS  Google Scholar 

  21. Gillespie RJ (1972) Molecular geometry. Van Nostrand Reinhold, London

    Google Scholar 

  22. Gillespie RJ, Hargittai I (1991) The VSEPR model of molecular geometry. Allyn and Bacon, Boston, MA

    Google Scholar 

  23. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca, NY, p 224

    Google Scholar 

  24. Cotton FA, Wilkinson G (1966) Advanced inorganic chemistry, 2nd edn. Interscience Publishers, New York, NY, p 105

    Google Scholar 

  25. Herrero R, Dávalos JZ, Abboud J-LM, Alkorta I, Koppel I, Koppel IA, Sonoda T, Mishima M (2007) Int J Mass Spectrom 267:302–307

    Article  CAS  Google Scholar 

  26. Abboud J-LM, Alkorta I, Burk P, Dávalos JZ, Quintanilla E, Della EW, Koppel IA, Koppel I (2004) Chem Phys Lett 398:560–563

    Article  CAS  Google Scholar 

  27. Abboud J-LM, Koppel IA, Alkorta I, Della EW, Müller P, Dávalos JZ, Burk P, Koppel I, Pihl V, Quintanilla E (2003) Angew Chem Int Ed 42:2281–2284

    Article  CAS  Google Scholar 

  28. Irngartinger H, Strack S, Gredel F, Dreuw A, Della EW (1999) Eur J Org Chem 1253–1257, and references quoted therein

Download references

Acknowledgments

This work was supported by the CASPUR Supercomputing Center, Rome, with Standard HPC Grants 2009 (“Accurate determination of molecular structures and solvation effects using quantum mechanics calculations, molecular dynamics simulations and X-ray related techniques”) and 2010 (“A combined X-ray absorption spectroscopy, molecular dynamics simulations and quantum mechanics calculation procedure for the structural characterization of ill-defined systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rita Campanelli.

Additional information

Dedicated to the memory of Professor Lev V. Vilkov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanelli, A.R., Domenicano, A. & Ramondo, F. Structural variations and electronic substituent effects in phenylcubane derivatives: a quantum chemical study. Struct Chem 22, 449–457 (2011). https://doi.org/10.1007/s11224-011-9750-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9750-y

Keywords

Navigation