Skip to main content
Log in

DFT theoretical studies of anions of aniline and its several derivatives

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Detailed studies of the molecular and electronic structures, vibrational frequencies, and infrared intensities of [M ] and [M-H ] anions of aniline and its derivatives (2-, 3-, 4-fluoroanilines, N-[(2E)-1-methylbut-2-en-1-yl]aniline, (2-cyclopent-2-en-1-ylphenyl)amine, N-[(2E)-1-methylbut-2-en-1-yl]aniline, and N-cyclopent-2-en-1-ylaniline) have been carried out using the density functional method with UB3LYP functional and 6-31G** basis set augmented with sp diffuse functions on nitrogen, fluorine, and three carbon atoms of benzene ring (in 2, 4, and 6 positions). For comparison, similar calculations were carried out for the closed-shell neutral molecules ([M]). The studies have provided detailed insight into the structure changes that take place in negative ions of aniline and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Svozil D, Frigato T, Havlas Z, Jungwirth P (2005) Phys Chem Chem Phys 7:840–845

    Article  CAS  Google Scholar 

  2. Loft S, Poulsen H (1996) J Mol Med 74:297–312

    Article  CAS  Google Scholar 

  3. Simons J (2008) J Phys Chem A 112:6401–6512

    Article  CAS  Google Scholar 

  4. Khvostenko VI, Rafikov SR (1975) Doklady AN SSSR 220:892–894

    CAS  Google Scholar 

  5. O’Malley TF (1966) Phys Rev 150:14–29

    Article  Google Scholar 

  6. Mazunov VA, Shchukin PV, Khatymov RV, Muftakhov MV (2006) Mass-Spectrometry 3:11–32

    CAS  Google Scholar 

  7. Khvostenko OG, Tuimedov GM (2006) Rapid Commun Mass Spectrom 20:3699–3708

    Article  CAS  Google Scholar 

  8. Khvostenko OG, Tuimedov GM, Dzhamilev UM (2007) Dokl Phys Chem 6:162–165

    Article  Google Scholar 

  9. Piest H, von Helden G, Meijer G (1999) J Chem Phys 110:2010–2015

    Article  CAS  Google Scholar 

  10. Borisenko VE, Baturin AV, Przeslavska M, Koll A (1997) J Mol Struct 407:53–62

    Article  CAS  Google Scholar 

  11. Tzeng WB, Narayanan K, Shieh KC, Tung CC (1998) J Mol Struct Theochem 428:231–241

    Article  CAS  Google Scholar 

  12. Ikeshoji T, Nakanaga T (1999) J Mol Struct Theochem 489:47–54

    Article  CAS  Google Scholar 

  13. Alcolea Palafox M, Nunez JL, Gil M (2002) J Mol Struct Theo chem 593:101–131

    Article  CAS  Google Scholar 

  14. Wojciechovski PM, Zierkiewicz W, Michalska D, Hobza P (2003) J Chem Phys 118:10900–10911

    Article  Google Scholar 

  15. Jordan KD, Michejda JA, Burrow PD (1976) JACS 98:7189–7191

    Article  CAS  Google Scholar 

  16. Granovsky A.A. Firefly v. 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html

  17. Roothaan CCJ (1951) Rev Mod Phys 23:69–89

    Article  CAS  Google Scholar 

  18. Helgaker T, Jorgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, New York

    Google Scholar 

  19. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  20. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  22. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  23. Kochikov IV, Kuramshina GM (1985) Moscow Univ Chem Bull 26:354–358

    CAS  Google Scholar 

  24. Yagola AG, Kochikov IV, Kuramshina GM, Pentin Yu A (1999) Inverse problems of vibrational spectroscopy. VSP, Zeist

    Google Scholar 

  25. Kuramshina GM, Weinhold F, Kochikov IV, Pentin Yu A, Yagola AG (1994) J Chem Phys 100:1414–1424

    Article  CAS  Google Scholar 

  26. Kerestury G, Jalkovsky G (1971) J Mol Struct 10:304–305

    Article  Google Scholar 

  27. ChemCraft v.1.6. www.chemcraftprog.com

  28. Lister DG, Tyler JK, Hog JH, Larsen NW (1974) J Mol Struct 23:253–264

    Article  CAS  Google Scholar 

  29. Schultz G, Portalone G, Ramondo F, Domenicano A, Hargittai I (1996) Struct Chem 7:59–71

    Article  CAS  Google Scholar 

  30. Larsen NW, Hansen EL, Nicolaisen FM (1976) Chem Phys Lett 43:584–586

    Article  CAS  Google Scholar 

  31. Quack M, Stockburger EL (1972) J Mol Spectrosc 43:87–116

    Article  CAS  Google Scholar 

  32. Pikhtovnikov SV, Mavrodiev VK, Furley II, Gataullin RR, Abdrakhmanov B (2006) High Energy Chem 40:224–229

    Article  CAS  Google Scholar 

  33. Nakanaga T, Ito F, Miyawaki J, Sugawara K, Takeo H (1996) Chem Phys Lett 261:414–420

    Article  CAS  Google Scholar 

  34. Gée Ch, Douin S, Crépin C, Bréchignac Ph (2001) Chem Phys Lett 338:130–136

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the RFBR Grants No 08-03-00415a and 08-01-97028-r.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kuramshina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakula, N.I., Kuramshina, G.M., Makhmutova, S.F. et al. DFT theoretical studies of anions of aniline and its several derivatives. Struct Chem 22, 345–356 (2011). https://doi.org/10.1007/s11224-010-9724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9724-5

Keywords

Navigation