Skip to main content
Log in

Computational investigation on 2,6-diamino-3,5-dinitropyridine-1-oxide crystal

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed on crystalline 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO). The conduct bands are generally quite flat, while the valence bands are uneven. The carbon, oxygen and amino nitrogen atoms make up the narrow lower energy levels. While the carbon, amino nitrogen and atoms in nitro group make up the higher energy levels. Change of electronic charges for the decrease of the cell edge a and c are almost the same, but different from the decrease of the cell edge b, indicating an anisotropic effect related to compressions. The C-Nitro and the N–O (N-oxide) bonds are the weakest, and tend to rupture upon external stimulation. The Mulliken population for the N–O (N-oxide) bond in crystal is much smaller than that in molecule, indicating that the molecular packing weakens this bond. Judged by the fact of N–O (N-oxide) bond being weaker than C-Nitro bond, ANPyO is sensitive to mechanic impact than 1,3,5-triamino-2,4,6-trinitrobenzene, which is in good agreement with experiment. The crystal lattice energy is predicted to be −166.03 kJ/mol, after being corrected for basis set superposition error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson KL, Merwin LH, Wilson WS, Facelli JC (2002) 15N chemical shifts in energetic materials: CP/MAS and ab initio studies of aminonitropyridines, aminonitropyrimidines, and their N-oxides. Int J Mol Sci 3:858–872

    Article  CAS  Google Scholar 

  2. Li JS, Huang YG, Dong HS (2004) Theoretical prediction of properties of polynitropyridines and their N-oxides. Chin J Energ Mater 12:576–579

    CAS  Google Scholar 

  3. Li JS, Huang YG, Dong HS, Yang GC (2003) Density functional theory study on polynitropyridines. Chin J Energ Mater 11:178–180

    CAS  Google Scholar 

  4. Cheng J, Yao QZ, Zhou XL, Du Y, Fang D, Liu ZL (2008) Novel synthesis of 2,6-diamino-3,5-dinitropyridine-1-oxide. Chin J Org Chem 28:1943–1947

    CAS  Google Scholar 

  5. Pagoria PF, Lee GS, Mitchell AR (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  6. He ZW, Cheng J, Liu ZL (2009) Refine and properties of 2, 6-diamino-3, 5-dinitropyridene-1-oxide. Chin J Energ Mater 17:392–395

    CAS  Google Scholar 

  7. Zhang XH, Ding LX, Zhu GJ (1997) Preparation methods of explosive in the lab. National Defense Industrial Press, Beijing

    Google Scholar 

  8. Miao YL, Zhang TL, Qiao XJ, Zhang JG, Yu RG, Yu KB (2003) Characterization and crystal structure of 2, 6-diamino-3, 5-dinitropyridine-1-oxide. Chin J Explos Propellents 26:37–40

    CAS  Google Scholar 

  9. Jadeja RN, Shirsat RN, Suresh E (2005) Ab initio study and its comparison with X-ray crystal structure of 4-[1-(4-Chloro-phenylamino)-ethyl] 5-methyl-2-p-tolyl-2, 4-dihydro-pyrazol-3-one. Struct Chem 16:515–520

    Article  CAS  Google Scholar 

  10. Hollins RA, Nissan RA, Wilson WS, Gilardi RD (1995) 2,6-Diamino-3,5-dinitropyridine-1-oxide: a new insensitive explosive. NAWCWPNS Technical Publication, China Lake, CA

    Google Scholar 

  11. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys 14:2717–2743

    CAS  Google Scholar 

  12. Saunders VR, Dovesi R, Roetti C, Causà M, Harrison NM, Orlando R, Zicovich-Wilson CM (1998) Crystal 98. University of Torino, Torino, Italy

    Google Scholar 

  13. Monkhorst HJ, Pack JD (1976) On special points for Brillouin zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  14. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies, some procedures with reduced errors. Mol Phys 19:553–559

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 Revision B 03. Gaussian, Inc, Pittsburgh, PA

  16. Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in the extended structures. VCH Publishers, New York

    Google Scholar 

  17. Kortus J, Pederson MR, Richardson SL (2000) Density functional-based prediction of the electronic, structural, and vibrational properties of the energetic molecules: octanitrocubane. Chem Phys Lett 322:224–230

    Article  CAS  Google Scholar 

  18. Mulliken RS, Ermler WC (1977) Diatomic molecules: results of ab initio calculations. Academic, New York, pp 33–38

    Google Scholar 

  19. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  20. Dovesi R, Causa M, Orlando R, Roetti C (1990) Ab initio approach to molecular crystals: a periodic Hartree-Fock study of crystalline urea. J Chem Phys 92:7402–7411

    Article  CAS  Google Scholar 

  21. Ju XH, Xiao HM, Xia QY (2003) A density functional theory investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal. J Chem Phys 119:10247–10255

    Article  CAS  Google Scholar 

  22. Kim KS, Tarakeshwar P, Lee JY (2000) Molecular cluster of π-systems: theoretical studies of structures, spectra, and origin of interaction energies. Chem Rev 100:4145–4186

    Article  CAS  Google Scholar 

  23. Gibbs TR, Popolato A (1980) LASL explosive property data. University of California Press, Berkeley

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the National Natural Science Foundation of China (Grant 10576030) and the Postgraduate Innovation Project of Jiangsu Province for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Hai Ju or Zu-Liang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, ZW., Zhou, SQ., Ju, XH. et al. Computational investigation on 2,6-diamino-3,5-dinitropyridine-1-oxide crystal. Struct Chem 21, 651–656 (2010). https://doi.org/10.1007/s11224-010-9594-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9594-x

Keywords

Navigation