Skip to main content
Log in

Theoretical simulation of CdTe nanocrystals in aqueous synthesis

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

At the B3LYP/LANL2DZ theoretical level, Cd3Te3, (Cd3Te3)2, (Cd3Te3)3, Cd4Te4, and Te–Cd–ligand clusters were optimized. Firstly, hexagon Cd3Te3 and tetrahedron Cd4Te4 structures (with TD symmetry) may be the minimum units of CdTe nanocrystals. They have similar conformations with the experimental wurtzite and zinc blende structures, respectively. Secondly, the frequencies of calculated Raman peaks of four clusters appear in about 140 cm−1, which is close to the experimental data. Following, analysis of Te–Cd–ligand molecules elucidates that all our ligands have similar effect to CdTe structure, because the main influence of ligands comes from thiol, which is also the result of experiment. Finally, considering the influence of solvent and ligand, we believe that our wavelengths of absorption peaks which are calculated using the time-dependent density functional theory are perfectly identical with those of CdTe nanocrystals, according to quantum size effect. Moreover, we have testified that all these absorption peaks are the transition from d to p orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013

    Article  CAS  Google Scholar 

  2. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Anal Bioanal Chem 391:2469

    Article  CAS  Google Scholar 

  3. Bidoz SF, Jennings T, Klostranec JM, Fung W, Rhee A, Li D, Chan WCW (2008) Angew Chem Int Ed 47:5577

    Article  Google Scholar 

  4. Wang DS, He J, Rosenzweig N, Rosenzweig Z (2004) Nano Lett 4:409

    Article  CAS  Google Scholar 

  5. Sarkar P, Springborg M (2003) Phys Rev B 68:235409

    Article  Google Scholar 

  6. Wang C, Zhang H, Zhang J, Li M, Sun H, Yang B (2007) J Phys Chem C 111:2465

    Article  CAS  Google Scholar 

  7. Wang C, Zhang H, Zhang J, Lv N, Li M, Sun H, Yang B (2008) J Phys Chem C 112:6330

    Article  CAS  Google Scholar 

  8. Huang TT, Tan K, Lin MH (2007) THEOCHEM 821:101

    Article  CAS  Google Scholar 

  9. Wang XQ, Clark SJ, Abram RA (2004) Phys Rev B 70:235328

    Article  Google Scholar 

  10. Murry CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706

    Article  Google Scholar 

  11. Cai E, Zhang H, Yang B, Ren H, Shen J (2001) Colloid Interface Sci 238:285

    Article  Google Scholar 

  12. Harrison MT, Kershaw SV, Rogach AL, Kornowski A, Eychmuller A, Weller H (2000) Adv Mater 12:123

    Article  CAS  Google Scholar 

  13. Rogach AL, Nattatri D, Ostrander JW, Giersig M, Kotov NA (2000) Chem Mater 12:2676

    Article  CAS  Google Scholar 

  14. Qu L, Peng ZA, Peng XG (2001) Nano Lett 1:333

    Article  CAS  Google Scholar 

  15. Yu WW, Peng XG (2002) Angew Chem Int Ed 41:2368

    Article  CAS  Google Scholar 

  16. Eichkorn K, Ahlrichs R (1998) Chem Phys Lett 288:235

    Article  CAS  Google Scholar 

  17. Troparevsky MC, Kronik L, Chelikowsky JR (2003) J Chem Phys 119:2284

    Article  CAS  Google Scholar 

  18. Puzder A, Williamson AJ, Gygi F, Galli G (2004) Phys Rev Lett 92:217401

    Article  Google Scholar 

  19. Bhattacharya SK, Kshirsagar A (2007) Phys Rev B 75:035402

    Article  Google Scholar 

  20. Petzke K (1999) Phys Rev B 60:12726

    Article  CAS  Google Scholar 

  21. Vossmeyer T, Reck G, Schulz B, Katsikas L, Weller H (1995) J Am Chem Soc 117:12881

    Article  CAS  Google Scholar 

  22. Kaminute Y, Koma A, Shimada T (2003) Solid State Commun 125:581

    Article  Google Scholar 

  23. Matxain JM, Irigoras A, Fowler JE, Ugalde JM (2001) Phys Rev A 64:013201

    Article  Google Scholar 

  24. Soloviev VN, Eichhofer A, Fenske D, Banin U (2001) Phys Status Solidi B 1:285

    Google Scholar 

  25. Yang P, Tretiak S, Masunov AE, Ivanov S (2008) J Chem Phys 129:074709

    Article  Google Scholar 

  26. Jain A, Kumar V, Kawazoe Y (2006) Comput Mater Sci 36:258

    Article  CAS  Google Scholar 

  27. Chuchev K, Belbruno JJ (2005) J Phys Chem A 109:1564

    Article  CAS  Google Scholar 

  28. Joswig JO, Roy S, Sarker P, Springborg M (2002) Chem Phys Lett 365:75

    Article  CAS  Google Scholar 

  29. Troparevsky MC, Chelikowsky JR (2001) J Chem Phys 114:943

    Article  CAS  Google Scholar 

  30. Jose R, Zhanpeisov NU, Fukumura H, Baba Y, Ishikawa M (2006) J Am Chem Soc 128:629

    Article  CAS  Google Scholar 

  31. Deglmann P, Ahlrichs R, Tsereteli K (2002) J Chem Phys 116:1585

    Article  CAS  Google Scholar 

  32. Goswami B, Pal S, Sarkar P, Seifert G, Springborg M (2006) Phys Rev B 73:205312

    Article  Google Scholar 

  33. Gurin VS (1998) Solid State Commun 108:389

    Article  CAS  Google Scholar 

  34. Bhattacharya SK, Kshirsagar A (2008) Eur Phys J D 48:355

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Jr, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B03, Gaussian, Inc., Wallingford, CT

  36. Rakovich YP, Gerlach M, Donegan JF, Gaponik N, Rogach AL (2005) Physica E 26:28

    Article  CAS  Google Scholar 

  37. Wang C, Zhang H, Xu S, Lv N, Li Y, Li M, Sun H, Zhang J, Yang B (2009) J Phys Chem C 113:827

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China under Grant No. 60877024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Wang, C. & Cui, Y. Theoretical simulation of CdTe nanocrystals in aqueous synthesis. Struct Chem 21, 519–525 (2010). https://doi.org/10.1007/s11224-009-9580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9580-3

Keywords

Navigation