Skip to main content
Log in

The role of symmetry in building up zeolite frameworks from layered zeolite precursors having ferrierite and CAS layers

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Layered zeolite precursors represent an emerging class of materials that expand the zeolite field in a new direction and have already produced new intriguing discoveries. One is a new fundamental insight that a zeolite framework can assemble by two pathways, directly in 3-D and via a layered precursor. Also new types of materials such as pillared and delaminated zeolites have been synthesized. Starting with the discovery of MCM-22 precursor in 1990s, other framework structures have now been obtained by topotactic condensation, including classical zeolites such as sodalite and ferrierite. The recent structural diversity observed with FER and CAS layers, which were found to produce two frameworks each, i.e. FER/CDO and CAS/NSI, respectively, are herein rationalized as resulting from the absence of in-plane mirror symmetry. A systematic treatment is envisioned, such as consideration of translational and pseudo-translational interactions in condensation of elementary shapes into close-packed assemblies, providing a blueprint for a general approach to analyze new precursors in the future. Other already documented instances of structural diversity include the presence of both types of packing in one preparation (CAS and NSI) and incomplete pairing of silanols connecting FER layers in ESR-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Breck DW (1984) Zeolite molecular sieves. Robert E. Krieger Publishing, Malabar

    Google Scholar 

  2. Szostak R (1992) Handbook of molecular sieves. Kluwer, Dordrecht

    Google Scholar 

  3. Baerlocher C, Maier WM, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  4. Akporiaye DE, Price GD (1989) Zeolites 9:23

    Article  CAS  Google Scholar 

  5. Shannon MD (1993). In: von Ballmoos R, Higgins JB, Treacy MMJ (eds) Proceedings of the 9th international zeolite conference, Montreal 1992, vol 1, p 389. Butterworth-Heinemann, Stoneham, Massachusetts

  6. Szostak R (1998) Molecular sieves, 2nd edn. Blackie Academic and Professional, New York

    Google Scholar 

  7. Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Chemistry of zeolites and related porous materials. Wiley, Singapore

    Book  Google Scholar 

  8. Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic Press, New York

    Google Scholar 

  9. van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) (2001) Introduction to zeolite science and practice vol 137. Stud Surf Sci Catal. Elsevier, New York

  10. Cejka J, van Bekkum H, Corma A, Schuth F (eds) (2007) Introduction to zeolite science and practice, 3rd edn, vol 168. Stud Surf Sci Catal. Elsevier, New York

  11. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK (1994) Science 264:910 (Washington, DC)

    Article  Google Scholar 

  12. Rubin MK, Chu P (1990) Composition of synthetic porous crystalline material, its synthesis and use. US Patent No. 4 954 325

  13. Lawton SL, Fung AS, Kennedy GJ, Alemany LB, Chang CD, Hatzikos GH, Lissy DN, Rubin MK, Timken H-KC (1996) J Phys Chem 100:3788

    Article  CAS  Google Scholar 

  14. Roth WJ (2006) Pol J Chem 80:703

    CAS  Google Scholar 

  15. Roth WJ (2007) In: Cejka J, van Bekkum H, Corma A, Schuth F (eds) Introduction to zeolite science and practice, 3rd edn, vol 168, p 221. Stud Surf Sci Catal. Elsevier, New York

  16. Schreyeck L, Caullet P, Mougenel JC, Guth JL, Marler B. J Chem Soc, Chem Commun 1995, 2187; Micropor Mater 1996, 6:259

    Google Scholar 

  17. Moteki T, Chaikittisilp W, Shimojima A, Okubo T (2008) J Am Chem Soc 130:15780

    Article  CAS  Google Scholar 

  18. Roth WJ (2005) In: Cejka J, Zilkova N, Nachtigall P (eds) Molecular sieves: from basic research to industrial applications, vol 158A, p 19. Stud Surf Sci Catal. Elsevier, New York

  19. Roth WJ, Kresge CT, Vartuli JC, Leonowicz ME, Fung AS, McCullen SB (1995) In: Beyer HK, Karge HG, Kiricsi I, Nagy JB (eds) Catalysis by microporous materials, vol 94, p 301. Stud Surf Sci Catal. Elsevier, New York

  20. Fung AS, Lawton SL, Roth WJ (1994) Synthetic layered MCM-56, its synthesis and use. US Patent No. 5 362 697

  21. Corma A, Fornes V, Pergher SB, Maesen TLM, Buglass JG (1998) Nature 393:353

    Article  Google Scholar 

  22. Climent MA, Corma A, Velty A (2004) Appl Catal A 263:155

    Article  CAS  Google Scholar 

  23. Ruan J, Wu P, Slater B, Terasaki O (2005) Angew Chem Int Ed Engl 44:6719

    Article  CAS  Google Scholar 

  24. Wu P, Ruan J, Wang L, Wu LL, Wang Y, Liu Y, Fan W, He M, Terasaki O, Tatsumi T (2008) J Am Chem Soc 130:8178

    Article  CAS  Google Scholar 

  25. Dorset DL, Kennedy GJ (2004) J Phys Chem B 108:15216

    Article  CAS  Google Scholar 

  26. Ikeda T, Akiyama Y, Oumi Y, Kawai A, Mizukami F (2004) Angew Chem Int Ed Engl 43:4892

    Article  CAS  Google Scholar 

  27. Burton A, Accardi RJ, Lobo RF, Falconi M, Deem MW (2000) Chem Mater 12:2936

    Article  CAS  Google Scholar 

  28. Millini R, Carluccio LC, Carati A, Bellussi G, Perego C, Cruciani G, Zanardi S (2004) Micropor Mesopor Mater 74:59

    Article  CAS  Google Scholar 

  29. Zanardi S, Alberti A, Cruciani G, Corma A, Fornes V, Brunelli M (2004) Angew Chem Int Ed Engl 43:4933

    Article  CAS  Google Scholar 

  30. Marler B, Camblor MA, Gies H (2006) Micropor Mesopor Mater 90:87

    Article  CAS  Google Scholar 

  31. Blake AJ, Franklin KR, Lowe BM (1988) J Chem Soc, Dalton Trans 2513

  32. Andrews SJ, Papiz MZ, McMeeking R, Blake AJ, Lowe BM, Franklin KR, Helliwell JR, Harding MM (1988) Acta Cryst B44:73

    CAS  Google Scholar 

  33. Whittam TV (1983) US Patent No 4 397 825

  34. Kitaigorodskii AI (1961) Organic chemical crystallography. Consultant’s Bureau, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Roth.

Additional information

Dedicated to Professor Adam Bartecki on the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, W.J., Dorset, D.L. The role of symmetry in building up zeolite frameworks from layered zeolite precursors having ferrierite and CAS layers. Struct Chem 21, 385–390 (2010). https://doi.org/10.1007/s11224-009-9540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9540-y

Keywords

Navigation