Skip to main content
Log in

Structures and bonding patterns of nanoannular carbon clusters (C4–C20) through AIM analyses

  • original research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structures, binding energies, harmonic frequencies, dipole moments, HOMO–LUMO energy gaps and particularly atoms in molecules (AIM) analyses of some nanoannular carbon clusters (C4–C20) are investigated at B3LYP/6-31+G(d) level of theory. No correlation is found by plotting the calculated binding energies as a functional number of carbon atoms of carbon clusters. The calculated binding energies sharply increase from C4 to C10 while slowly from C10 to C20. The binding energies of C4n+2 clusters including C6, C10, C14, and C18 have a clear increase when compared with others indicating their aromatic characters which is confirmed by results of HOMO–LUMO energy gaps and geometrical parameters. AIM analyses show that most of our carbon clusters are topologically normal (non-conflict) with stable structures. Nevertheless, the topological networks of small antiaromatic rings, C4 and C8, at their equilibrium geometries may change via molecular vibrations. The existence of straight bond paths in 3D molecular graphs of carbon clusters with n > 10 implies that ring strains are decreased as the ring sizes grow. Except for C4 and C8, the ellipticity values for the remaining carbon clusters are small indicating that the C–C bond is conserved in these clusters. Dipole moments of even-numbered structures are negligible, whereas odd-numbered ones have μ values of 0.09−0.73 D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cermak I, Monninger G, Kratschmer W (1997) Advances in molecular structure research, vol 3. JAI, Greenwich, p 117

    Google Scholar 

  2. Hinkle KH, Keady JJ, Bernath PF (1988) Science 241:1319. doi:10.1126/science.241.4871.1319

    Article  CAS  Google Scholar 

  3. Kroto HW (1998) Nature 331:328. doi:10.1038/331328a0

    Article  Google Scholar 

  4. Wakabayashi T, Achiba Y (1992) Chem Phys Lett 190:465. doi:10.1016/0009-2614(92)85174-9

    Article  CAS  Google Scholar 

  5. Weltner W Jr, Van Zee RJ (1989) Chem Rev 89:1713. doi:10.1021/cr00098a005

    Article  CAS  Google Scholar 

  6. Van Orden A, Saykally RJ (1998) Chem Rev 98:2313. doi:10.1021/cr970086n

    Article  Google Scholar 

  7. Hwang HJ, Van Orden A, Tanaka K, Kuo EW, Heath JR, Saykally RJ (1993) Mol Phys 79:769. doi:10.1080/00268979300101611

    Article  CAS  Google Scholar 

  8. Giesen TF, Van Orden A, Hwang HJ, Fellers RS, Provencal RA, Saykally RJ (1994) Science 265:756. doi:10.1126/science.11539187

    Article  CAS  Google Scholar 

  9. Ray AKJ (1987) Phys B At Mol Phys 20:5233. doi:10.1088/0022-3700/20/19/031

    Article  CAS  Google Scholar 

  10. Hutter J, Lüthi HP, Diederich FJ (1994) Am Chem Soc 116:750. doi:10.1021/ja00081a041

    Article  CAS  Google Scholar 

  11. Martin JML, Taylor PRJ (1996) Phys Chem 100:6047. doi:10.1021/jp952471r

    Article  CAS  Google Scholar 

  12. Martin JML, El-Yazal J, Francüois JP (1995) Chem Phys Lett 242:570. doi:10.1016/0009-2614(95)00801-A

    Article  CAS  Google Scholar 

  13. Xu Shu-hong, Zhang M, Zhao Y, Chen B, Zhang J, Sun C (2006) Chem Phys Lett 421:444. doi:10.1016/j.cplett.2006.01.038

    Article  CAS  Google Scholar 

  14. Arulmozhirajaa S, Ohno TJ (2008) Chem Phys 128:114301

    Google Scholar 

  15. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, New York

    Google Scholar 

  16. Bader RFWJ (1998) Phys Chem A 102:7314. doi:10.1021/jp981794v

    Article  CAS  Google Scholar 

  17. Popelier PLA (2000) Atoms in molecules. Prentice Hall, (UMIST), Englewood Cliffs

    Google Scholar 

  18. Biegler-König FJ (2000) Comput Chem 21:1040. doi:10.1002/1096-987X(200009)21:12<1040::AID-JCC2>3.0.CO;2-8

    Article  Google Scholar 

  19. “MORPHY99”, a topological analyses program written by P.L.A. Popelier with contribution from R.G.A. Bone, UMIST, Engl, EU

  20. Popelier PLA (1996) Comput Phys Commun 93:212. doi:10.1016/0010-4655(95)00113-1

    Article  CAS  Google Scholar 

  21. Jalbout AF, Fernandez SJ (2002) Mol Struct 584:169

    CAS  Google Scholar 

  22. Giesen TF, Berndt U, Yamada KMT, Fuchs G, Schieder R, Winnewisser G, Provencal RA, Keutsch FN, Orden AV, Saykally R (2001) Chem Phys Chem 2:242. doi:10.1002/1439-7641(20010417)2:4<242::AID-CPHC242>3.0.CO;2-#

    CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Abdolreza Sadjadi, Abdi, (Islamic Azad University of Kazeroon) for many stimulating and helpful discussions as well as technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassaee, M.Z., Musavi, S.M., Akhavan, A. et al. Structures and bonding patterns of nanoannular carbon clusters (C4–C20) through AIM analyses. Struct Chem 20, 839–846 (2009). https://doi.org/10.1007/s11224-009-9478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9478-0

Keywords

Navigation