Skip to main content
Log in

Thermal behavior of trehalose dihydrate (T h) and β-anhydrous trehalose (T β) by in-situ laboratory parallel-beam X-ray powder diffraction

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermal behaviors of trehalose dihydrate (T h) and β-anhydrous trehalose (T β) have been investigated by in-situ laboratory parallel-beam X-ray powder diffraction. Data indicate that both phases show essentially the same volume expansion but expansion of the anhydrous form is markedly anisotropic due to the features of the hydrogen-bond network. Under the present experimental conditions, dehydration starts at 66 °C and within the 75 < T < 114 °C the presence of the T α anhydrous polymorphic form has been detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kilburn D, Townrow S, Meunier V, Richardson R, Alam A, Ubbink J (2006) Nat Mater 5:632. doi:10.1038/nmat1681

    Article  CAS  Google Scholar 

  2. Cesàro A (2006) Nat Mater 5:503. doi:10.1038/nmat1701

    Article  Google Scholar 

  3. Crowe JH, Oliver AE, Tablin F (2002) Integr Comp Biol 42:497. doi:10.1093/icb/42.3.497

    Article  CAS  Google Scholar 

  4. Higashiyama T (2002) Pure Appl Chem 74:1263. doi:10.1351/pac200274071263

    Article  CAS  Google Scholar 

  5. Magazù S, Migliardo F, Telling M (2008) Food Chem 106:1460. doi:10.1016/j.foodchem.2007.05.097

    Article  Google Scholar 

  6. Brown GM, Rohrer DC, Berking B, Beevers C, Gould R, Simpson R (1972) Acta Crystallogr B 28:3145. doi:10.1107/S0567740872007654

    Article  CAS  Google Scholar 

  7. Nagase H, Endo T, Ueda H, Nakagaki M (2002) Carbohydr Res 337:167. doi:10.1016/S0008-6215(01)00294-4

    Article  CAS  Google Scholar 

  8. Pinto SS, Diogo HP, Moura-Ramos JJ (2006) J Chem Thermodyn 38:1130. doi:10.1016/j.jct.2005.11.005

    Article  CAS  Google Scholar 

  9. Sussich F, Cesàro A (2000) J Therm Anal Calorim 62:757. doi:10.1023/A:1026737811549

    Article  CAS  Google Scholar 

  10. Cesàro A, De Giacomo O, Sussich F (2008) Food Chem 106:1318. doi:10.1016/j.foodchem.2007.01.082

    Article  Google Scholar 

  11. Furuki T, Abe R, Kawaji H, Atake T, Sakurai M (2008) J Therm Anal Calorim 93:561. doi:10.1007/s10973-007-8362-7

    Google Scholar 

  12. Furuki T, Kishib A, Sakurai M (2005) Carbohydr Res 340:429. doi:10.1016/j.carres.2004.12.003

    Article  CAS  Google Scholar 

  13. Jones MD, Hooton JC, Dawson ML, Price R, Ferrie AR (2006) Int J Pharm 313:87. doi:10.1016/j.ijpharm.2006.01.026

    Article  CAS  Google Scholar 

  14. McGarvey OS, Kett VL, Craig DQM (2003) J Phys Chem B 107:6614. doi:10.1021/jp0262822

    Article  CAS  Google Scholar 

  15. Bruker AXS (2005) Topas V3: general profile and structure analysis for powder diffraction data. User’s manual. Bruker AXS, Karlsruhe

    Google Scholar 

  16. Cheary RW, Coelho AA (1992) J Appl Cryst 25:109. doi:10.1107/S0021889891010804

    Article  CAS  Google Scholar 

  17. Delhez R, de Keijser TH, Langford JI, Louër D, Mittemeijer EJ, Sonneveld EJ (1993) In: Young RA (ed) The Rietveld method. Oxford University Press, Oxford, pp 132–166

    Google Scholar 

  18. Jeffrey GA, Nanni R (1985) Carbohydr Res 137:21. doi:10.1016/0008-6215(85)85146-6

    Article  CAS  Google Scholar 

  19. Von Dreele RB (1997) J Appl Cryst 30:517. doi:10.1107/S0021889897005918

    Article  Google Scholar 

  20. Fei Y (1995) In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants, vol 2. American Geophysical Union, Washington, pp 29–44

    Google Scholar 

  21. Reisener HJ, Goldschmid HR, Ledingham GA, Perlin AS (1962) Can J Biochem Physiol 40:1248

    CAS  Google Scholar 

  22. Sussich F, Urbani R, Princivalle F, Cesaro A (1998) J Am Chem Soc 120:7893. doi:10.1021/ja9800479

    Article  CAS  Google Scholar 

  23. Young RA (1993) In: Young RA (ed) The Rietveld method. Oxford University Press, Oxford, pp 1–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ballirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballirano, P., Sadun, C. Thermal behavior of trehalose dihydrate (T h) and β-anhydrous trehalose (T β) by in-situ laboratory parallel-beam X-ray powder diffraction. Struct Chem 20, 815–823 (2009). https://doi.org/10.1007/s11224-009-9473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9473-5

Keywords

Navigation