Skip to main content
Log in

A computational study of the endohedral fullerene GeH4@C60

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The structures, stabilities, and electronic properties of the endohedral fullerene GeH4@C60 have been systematically studied by using the hybrid DFT-B3PW91 functional in conjunction with 6-31G(d) basis sets. Our calculated results show that the GeH4 molecule is more compact in the center of the C60 cage and exists in molecular form inside the fullerene. The Zero-Point and BSSE corrected binding energy of GeH4@C60 is −1.77 eV. The calculated HOMO–LUMO energy gap, the vertical ionization potentials (VIP) and vertical electron affinities (VEA) are similar to that of C60 cage. It is indicated that GeH4@C60 also seems to be very stable species. Natural population analysis on the GeH4@C60 reveals that the central GeH4 only gain −0.06 charges from the C60 cage. Additionally, the vibrational frequencies and active infrared intensities of GeH4@C60 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heath JR, O’Brien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittle FK, Smalley RE (1985) J Am Chem Soc 107:7779. doi:10.1021/ja00311a102

    Article  CAS  Google Scholar 

  2. Gan LH (2006) Chem Phys Lett 429:185. doi:10.1016/j.cplett.2006.08.051

    Article  CAS  Google Scholar 

  3. Murphy TA, Pawlik T, Weidinger A, Hohne M, Alcala R, Spaeth JM (1996) Phys Rev Lett 77:1075. doi:10.1103/PhysRevLett.77.1075

    Article  CAS  Google Scholar 

  4. Tang C, Fu S, Deng K, Yuan Y, Tan W, Huang D, Wang X (2008) J Mol Struct Theochem 867:111. doi:10.1016/j.theochem.2008.07.032

    Article  CAS  Google Scholar 

  5. Ren XY, Jiang CY, Wang J, Liu ZY (2008) J Mol Graph Model 27:558. doi:10.1016/j.jmgm.2008.09.010

    Article  CAS  Google Scholar 

  6. Ren XY, Liu ZY (2005) Struct Chem 16:567. doi:10.1007/s11224-005-6022-8

    Article  CAS  Google Scholar 

  7. Makurin YN, Sofronov AA, Gusev AI, Ivanovsky AL (2001) Chem Phys 270:293. doi:10.1016/S0301-0104(01)00342-1

    Article  CAS  Google Scholar 

  8. Slanina Z, Lee SL, Adamowicz L, Uhlík F, Nagase S (2005) Int J Quantum Chem 104:272. doi:10.1002/qua.20514

    Article  CAS  Google Scholar 

  9. Slanina Z, Uhlík F, Lee SL, Adamowicz L, Nagase S (2008) Int J Quantum Chem 108:2636. doi:10.1002/qua.21648

    Article  CAS  Google Scholar 

  10. Slanina Z, Uhlík F, Lee SL, Adamowicz L, Nagase S (2007) Int J Quantum Chem 107:2494. doi:10.1002/qua.21344

    Article  CAS  Google Scholar 

  11. Sun LL, Chang YF, Hong B, Wang RS (2007) Int J Quantum Chem 107:1241. doi:10.1002/qua.21248

    Article  CAS  Google Scholar 

  12. Li XJ (2009) J Mol Struct Theochem 896:25. doi:10.1016/j.theochem.2008.10.036

    Article  CAS  Google Scholar 

  13. Turker L, Erkoc S (2003) J Mol Struct Theochem 638:37. doi:10.1016/S0166-1280(03)00421-4

    Article  CAS  Google Scholar 

  14. Erkoc S, Turker L (2003) J Mol Struct Theochem 640:57. doi:10.1016/S0166-1280(03)00601-8

    Article  CAS  Google Scholar 

  15. Plakhutin BN, Breslavskaya NN, Gorelik EV, Arbuznikov AV (2005) J Mol Struct Theochem 727:149. doi:10.1016/j.theochem.2005.02.031

    Article  CAS  Google Scholar 

  16. Wang ZY, Liu DJ, Su KH, Fan HQ, Li YL, Wen ZY (2007) Chem Phys 270:309. doi:10.1016/j.chemphys.2006.11.001

    Article  Google Scholar 

  17. Larssona JA, Greer JC (2002) J Chem Phys 116:7849. doi:10.1063/1.1468643

    Article  Google Scholar 

  18. Ren XY, Liu ZY (2005) J Chem Phys 122:034306. doi:10.1063/1.1830483

    Article  Google Scholar 

  19. Shinohara H (2000) Rep Prog Phys 63:843. doi:10.1088/0034-4885/63/6/201

    Article  CAS  Google Scholar 

  20. Saunders M, Cross RJ, Jimenez-Vazquez HA, Shimshi R, Khong A (1996) Science 271:1693. doi: 10.1126/science.271.5256.1693

    Article  CAS  Google Scholar 

  21. Piezak B, Waiblinger M, Murphy TA, Weidinger A, Hohne M, Dietel E, Hirsch A (1997) Chem Phys Lett 279:259. doi:10.1016/S0009-2614(97)01100-7

    Article  Google Scholar 

  22. Weiske T, Bohme DK, Hrusak J, Krätschmer W, Schwarz H (1991) Angew Chem Int Ed Engl 30:884. doi:10.1002/anie.199108841

    Article  Google Scholar 

  23. Gromov A, Krawez N, Lassesson A, Ostrovskii DI, Campbell EEB (2002) Curr Appl Phys 2:51. doi:10.1016/S1567-1739(01)00101-8

    Article  Google Scholar 

  24. Mauser H, Hommes Nv E, Clark T, Hirsch A, Pietzak B, Weidinger A, Dunsch L (1997) Angew Chem Int Ed Engl 36:2835. doi:10.1002/anie.199728351

    Article  CAS  Google Scholar 

  25. Greer JC (2000) Chem Phys Lett 326:567. doi:10.1016/S0009-2614(00)00839-3

    Article  CAS  Google Scholar 

  26. Erkoc S, Turker L (2003) J Mol Struct Theochem 634:195. doi:10.1016/S0166-1280(03)00343-9

    Article  CAS  Google Scholar 

  27. Dodziuk H, Dolgonos G, Lukin O (2001) Carbon 39:1907. doi:10.1016/S0008-6223(00)00323-7

    Article  CAS  Google Scholar 

  28. Rehaman A, Gagliardi L, Pyykko P (2007) Int J Quantum Chem 107:1162. doi:10.1002/qua.21230

    Article  CAS  Google Scholar 

  29. Gagliardi L (2005) J Chem Theory Comput 1:1172. doi:10.1021/ct0501856

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Montgomery JrJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala WPY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford, CT

  31. Su KH, Wei J, Hu XL, Yue H, Lü L (2000) Acta Phys Chim Sin 16:643

    CAS  Google Scholar 

  32. Su KH, Wei J, Hu XL, Yue H, Lü L (2000) Acta Phys Chim Sin 16:718

    CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  34. Perdew JP, Wang Y (1992) Phys Rev B 45:13244. doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  35. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257. doi:10.1063/1.1677527

    Article  CAS  Google Scholar 

  36. Boys SF, Bernardi F (1970) Mol Phys 19:553. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  37. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024. doi:10.1063/1.472902

    Article  CAS  Google Scholar 

  38. Cramer CJ (2002) Essentials of computational chemistry. Chichester, Wiley

    Google Scholar 

  39. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  40. Tables of interatomic distances, Special Publication 18 (1965) The Chemical Society, London

  41. Georges T (1990) J Am Chem Soc 112:2130. doi:10.1021/ja00162a014

    Article  Google Scholar 

  42. David WIF, Ibberson RM, Matthewman JC, Prassides K, Dennis TJS, Hare JP, Kroto HW, Taylor R, Walton DRM (1991) Nature 353:147. doi:10.1038/353147a0

    Article  CAS  Google Scholar 

  43. Manolopoulos DE, May JC, Down SE (1991) Chem Phys Lett 181:105. doi:10.1016/0009-2614(91)90340-F

    Article  CAS  Google Scholar 

  44. Brink C, Andersen LH, Hvelplund P, Mathur D, Volstad JD (1995) Chem Phys Lett 233:52. doi:10.1016/0009-2614(94)01413-P

    Article  CAS  Google Scholar 

  45. de Vries J, Steger H, Kamke B, Menzel C, Weisser B, Kamke W, Hertel IV (1992) Chem Phys Lett 188:159. doi:10.1016/0009-2614(92)90001-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Peng or Xiao Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Li, X.J., Zhang, D.X. et al. A computational study of the endohedral fullerene GeH4@C60 . Struct Chem 20, 789–794 (2009). https://doi.org/10.1007/s11224-009-9468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9468-2

Keywords

Navigation