Skip to main content
Log in

Cations of halogenated methanes: adiabatic ionization energies, potential energy surfaces, and ion fragment appearance energies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The DFT-B3LYP and G3X model chemistry were used to predict the cation structures and energetics of fluorinated, chlorinated, and brominated methanes. Ion–complex structures between methylene cations and HX (X = F, Cl, Br) were found for all H-containing cations, and [CHF–FH]+, [CF2–FH]+, [CCl2–ClH]+, and [CCl2–FH]+ structures are more stable than their normal tetravalent structures. Several cations should also be better described as ion–complex structures between methyl cations and halogen atoms, e.g., [CF3–Br]+. Transition states connecting normal and ion–complex structures were also located, and potential energy diagrams were constructed for decomposition of methane cations and to predict the fragmentation pathways. The G3X energies were used to predict the adiabatic ionization energies (IEas) and ion fragment appearance energies (AEs) from methanes. Many of the experimental AEs correspond to the energies of transition states instead of the thermodynamic dissociation limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Itikawa Y (2007) Molecular processes in plasmas: collisions of charged particles with molecules. Berlin, Springer

    Google Scholar 

  2. Berkowitz J, Ellison GB, Gutman D (1994) J Phys Chem 98:2744. doi:10.1021/j100062a009

    Article  CAS  Google Scholar 

  3. Lloyd DR, Bassett PJ (1971) J Chem Soc A 641

  4. Sadilek M, Turecek F (1996) J Phys Chem 100:224. doi:10.1021/jp952416i

    Article  CAS  Google Scholar 

  5. Fiegele T, Hanel G, Torres I, Mark TD (2000) J Phys At Mol Opt Phys 33:4263. doi:10.1088/0953-4075/33/20/306

    Article  CAS  Google Scholar 

  6. Torres I, Martinez R, Sanchez Rayo MN, Castano F (2000) J Phys At Mol Opt Phys 33:3615. doi:10.1088/0953-4075/33/18/310

    Article  CAS  Google Scholar 

  7. Torres I, Martinez R, Castano F (2002) J Phys At Mol Opt Phys 35:4113. doi:10.1088/0953-4075/35/19/313

    Article  CAS  Google Scholar 

  8. Torres I, Martinez R, Castano F (2002) J Phys At Mol Opt Phys 35:2423. doi:10.1088/0953-4075/35/11/302

    Article  CAS  Google Scholar 

  9. Cicman P, Gluch K, Pelc A, Sailer W, Matt-Leubner S, Scheier P, Matejcik S, Lukac P, Robertson WD, Compton RN, Mark TD (2003) J Chem Phys 119:11704. doi:10.1063/1.1622665

    Article  CAS  Google Scholar 

  10. Sierra B, Martinez R, Redondo C, Castano F (2005) Int J Mass Spectr 246:105. doi:10.1016/j.ijms.2005.08.006

    Article  CAS  Google Scholar 

  11. Hobrock DL, Kiser RW (1964) J Phys Chem 68:575. doi:10.1021/j100785a023

    Article  CAS  Google Scholar 

  12. Lossing FP (1972) Bull Soc Chim Belg 81:125

    CAS  Google Scholar 

  13. Kime YJ, Driscoll DC, Dowben PA (1987) J Chem Soc Faraday Trans II 83:403. doi:10.1039/f29878300403

    Article  CAS  Google Scholar 

  14. Reed RI, Snedden W (1956) J Chem Soc Faraday Trans 55:876

    Google Scholar 

  15. Harrison AG, Shannon TW (1962) Can J Chem 40:1730. doi:10.1139/v62-265

    Article  CAS  Google Scholar 

  16. Farmer JB, Henderson IHS, Lossing FP, Marsden DGH (1956) J Chem Phys 24:348. doi:10.1063/1.1742474

    Article  CAS  Google Scholar 

  17. Martin RH, Lampe FW, Taft RW (1966) J Am Chem Soc 88:1353. doi:10.1021/ja00959a004

    Article  CAS  Google Scholar 

  18. Noutary CJ (1968) J Res NBS 72A:479

    Google Scholar 

  19. Watanabe K (1957) J Chem Phys 26:542. doi:10.1063/1.1743340

    Article  CAS  Google Scholar 

  20. Watanabe K, Nakayawa T, Mottl J (1962) J Quant Spectr Radiat Transf 2:369. doi:10.1016/0022-4073(62)90023-7

    Article  Google Scholar 

  21. Ajello JM, Huntress WT Jr, Rayermann P (1976) J Chem Phys 64:4746. doi:10.1063/1.432061

    Article  CAS  Google Scholar 

  22. Ma Z-X, Liao C-L, Ng CY, Ma NL, Li W-K (1993) J Chem Phys 99:6470. doi:10.1063/1.465864

    Article  CAS  Google Scholar 

  23. Clay JT, Walters EA, Grover JR, Willcox MV (1994) J Chem Phys 101:2069. doi:10.1063/1.467714

    Article  CAS  Google Scholar 

  24. Li Q, Ran Q, Chen C, Yu S, Ma X, Sheng L, Zhang Y, Li W-K (1996) Int J Mass Spectr Ion Process 153:29. doi:10.1016/0168-1176(95)04349-7

    Article  CAS  Google Scholar 

  25. Zhang Y, Sheng L, Qi F, Yu S (1996) J Electron Spectrosc Relat Phenom 79:483. doi:10.1016/0368-2048(96)02900-3

    Article  CAS  Google Scholar 

  26. Sheng L, Qi F, Gao H, Zhang Y, Yu S, Li W-K (1997) Int J Mass Spectrom Ion Process 161:151. doi:10.1016/S0168-1176(96)04506-5

    Article  CAS  Google Scholar 

  27. Asher RL, Ruscic B (1997) J Chem Phys 106:210. doi:10.1063/1.473982

    Article  CAS  Google Scholar 

  28. Jarvis GK, Tuckett RP (1998) Chem Phys Lett 295:145. doi:10.1016/S0009-2614(98)00937-3

    Article  CAS  Google Scholar 

  29. Irikura KK (1999) J Am Chem Soc 121:7689. doi:10.1021/ja991350s

    Article  CAS  Google Scholar 

  30. Chiang S-Y, Bahou M, Sankaran K, Lee Y-P, Lu H-F, Su M-D (2003) J Chem Phys 118:62. doi:10.1063/1.1524178

    Article  CAS  Google Scholar 

  31. Chiang S-Y, Fang Y-S, Sankaran K, Lee Y-P (2004) J Chem Phys 120:3270. doi:10.1063/1.1641010

    Article  CAS  Google Scholar 

  32. Sharma P, Vatsa RK, Maity DK, Kulshreshtha SK (2004) Rapid Commun Mass Spectrom 18:2383. doi:10.1002/rcm.1638

    Article  CAS  Google Scholar 

  33. Walters EA, Clay JT, Grover JR (2005) J Phys Chem A 109:1541. doi:10.1021/jp040610b

    Article  CAS  Google Scholar 

  34. Wang Z, Hao L, Zhou S, Yang B, Huang C, Wang S, Shan X, Qi F, Zhang Y, Sheng L (2007) J Mol Struct 826:192. doi:10.1016/j.molstruc.2006.04.047

    Article  CAS  Google Scholar 

  35. Wang FC-Y, Leroi GE (1983) Ann Isr Phys Soc 6:210

    Google Scholar 

  36. Werner AS, Tsai BP, Baer T (1974) J Chem Phys 60:3650. doi:10.1063/1.1681585

    Article  CAS  Google Scholar 

  37. Kischlat W, Morgner H (1985) J Electron Spectrosc Relat Phenom 35:273. doi:10.1016/0368-2048(85)80061-X

    Article  CAS  Google Scholar 

  38. Jochims H-W, Lohr W, Baumgartel H (1976) Ber Bunsenges Phys Chem 80:130

    CAS  Google Scholar 

  39. Brehm B, Frey R, Kustler A, Eland JHD (1974) Int J Mass Spectrom Ion Process 79:251

    Google Scholar 

  40. Powis I (1980) Mol Phys 39:311. doi:10.1080/00268978000100271

    Article  CAS  Google Scholar 

  41. Doucet J, Sauvagean P, Sandorfy C (1973) J Chem Phys 58:3708. doi:10.1063/1.1679722

    Article  CAS  Google Scholar 

  42. Andrews L, Dyke JM, Jonathan N, Keddar N, Morris A (1984) J Phys Chem 88:1950. doi:10.1021/j150654a007

    Article  CAS  Google Scholar 

  43. Andrews L, Dyke JM, Jonathan N, Keddar N, Morris A (1984) J Am Chem Soc 106:299. doi:10.1021/ja00314a007

    Article  CAS  Google Scholar 

  44. Andrews L, Dyke JM, Jonathan N, Keddar N, Morris A, Ridha A (1984) J Phys Chem 88:2367

    Google Scholar 

  45. Kohn SW, Robles ESJ, Logan CF, Chen P (1993) J Phys Chem 97:4936. doi:10.1021/j100121a012

    Article  CAS  Google Scholar 

  46. Robles ESJ, Chen P (1994) J Phys Chem 98:6919. doi:10.1021/j100079a006

    Article  CAS  Google Scholar 

  47. Novak I, Cvitas T, Klasinc L, Gusten H (1981) J Chem Soc Faraday Trans II 77:2049. doi:10.1039/f29817702049

    Article  CAS  Google Scholar 

  48. Dyke JM, Lewis AE, Morris A (1984) J Chem Phys 80:1382. doi:10.1063/1.446886

    Article  CAS  Google Scholar 

  49. Hepburn JW, Trevor DJ, Pollard JE, Shierly DA, Lee YT (1984) J Chem Phys 76:4287. doi:10.1063/1.443467

    Article  Google Scholar 

  50. Chau FT, McDowell CA (1975) J Electron Spectrosc Relat Phenom 6:357. doi:10.1016/0368-2048(75)80023-5

    Article  CAS  Google Scholar 

  51. Jadrny R, Karlsson L, Mattsson L, Siegbahn K (1977) Phys Scr 16:235. doi:10.1088/0031-8949/16/5-6/011

    Article  CAS  Google Scholar 

  52. Mathis JE, Compton RN, Boyles DC, Pagni RM (1996) Mol Phys 89:505. doi:10.1080/002689796173868

    Article  CAS  Google Scholar 

  53. Bunzli JC, Frost DC, Herring FG, McDowell CA (1976) J Electron Spectrosc Relat Phenom 9:289. doi:10.1016/0368-2048(76)80047-3

    Article  CAS  Google Scholar 

  54. Tsai BP, Baer T, Werner AS, Lin SF (1975) J Phys Chem 79:570. doi:10.1021/j100573a006

    Article  Google Scholar 

  55. Creasey JC, Smith DM, Tuckett RP, Yoxall KR, Codling K, Hatherly PA (1996) J Phys Chem 100:4350. doi:10.1021/jp952318x

    Article  CAS  Google Scholar 

  56. Seccombe DP, Chimr YL, Tuckett RP (2001) J Chem Phys 114:4058. doi:10.1063/1.1344888

    Article  CAS  Google Scholar 

  57. Locht R, Leyh B, Hoxha A, Dehareng D, Hottmann K, Jochims H-W, Baumgartel H (2001) Chem Phys 272:293. doi:10.1016/S0301-0104(01)00466-9

    Article  CAS  Google Scholar 

  58. Song Y, Qian X-M, Lau K-C, Ng CY, Liu J, Chen W (2001) J Chem Phys 115:4095. doi:10.1063/1.1391268

    Article  CAS  Google Scholar 

  59. Lago AF, Kercher JP, Bodi A, Sztaray B, Miller B, Wurzelmann D, Baer T (2005) J Phys Chem A 109:1802. doi:10.1021/jp045337s

    Article  CAS  Google Scholar 

  60. Locht R, Leyh B, Dehareng D, Hottmann K, Jochims H-W, Baumgartel H (2006) Chem Phys 323:458. doi:10.1016/j.chemphys.2005.10.006

    Article  CAS  Google Scholar 

  61. Lago AF, Baer T (2006) Int J Mass Spectrom 252:20. doi:10.1016/j.ijms.2006.01.013

    Article  CAS  Google Scholar 

  62. Howle CR, Collins DJ, Tuckett RP, Malins AER (2007) Phys Chem Chem Phys 7:2287

    Google Scholar 

  63. Li J, Yang J, Mo Y, Lau KC, Qian XM, Song Y, Liu J, Ng CY (2007) J Chem Phys 126:184304. doi:10.1063/1.2730829

    Article  CAS  Google Scholar 

  64. Garcia GA, Guyon PM, Powis I (2001) J Phys Chem A 105:8296. doi:10.1021/jp011008d

    Article  CAS  Google Scholar 

  65. Weitzel K-M, Guthe F, Mahnert J, Locht R, Baumgartel H (1995) Chem Phys 201:287. doi:10.1016/0301-0104(95)00249-7

    Article  CAS  Google Scholar 

  66. Weitzel K-M, Malow MS, Jarvis GK, Baer T, Song Y, Ng CY (1999) J Chem Phys 111:8267. doi:10.1063/1.480169

    Article  CAS  Google Scholar 

  67. Shuman NS, Zhao LY, Boles M, Baer T, Sztaray B (2008) J Phys Chem A 112:10533. doi:10.1021/jp8056459

    Article  CAS  Google Scholar 

  68. Linstrom PJ, Mallard WG (eds) (2005) In: Chemistry NIST webBook, NIST Standard Reference Database Number 69. NIST: National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/), June 2005

  69. Hildenbrand DL (2000) Int J Mass Spectrom 197:237. doi:10.1016/S1387-3806(99)00259-6

    Article  CAS  Google Scholar 

  70. Rodriquez CF, Bohme DK, Hopkinson AC (1996) J Phys Chem 100:2942. doi:10.1021/jp951994w

    Article  CAS  Google Scholar 

  71. Ricca A (1999) J Phys Chem A 103:1876. doi:10.1021/jp9843555

    Article  CAS  Google Scholar 

  72. Moc J (1999) Chem Phys Lett 247:365

    CAS  Google Scholar 

  73. Ma NL, Lau K-C, Chien S-H, Li W-K (1999) Chem Phys Lett 311:275. doi:10.1016/S0009-2614(99)00794-0

    Article  CAS  Google Scholar 

  74. Bauschlicher CW, Ricca A (2000) J Phys Chem A 104:4581. doi:10.1021/jp9942771

    Article  CAS  Google Scholar 

  75. Lazarou YG, Papadimitriou VC, Prosmitis AV, Papagiannakopoulos P (2002) J Phys Chem A 106:11502. doi:10.1021/jp020010h

    Article  CAS  Google Scholar 

  76. Cameron MR, Bacskay GB (2000) J Phys Chem A 104:11212. doi:10.1021/jp002429i

    Article  CAS  Google Scholar 

  77. Wang L, He Y-L (2008) Int J Mass Spectrom 276:56. doi:10.1016/j.ijms.2008.07.004

    Article  CAS  Google Scholar 

  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJ. A., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian, Inc., Wallingford, CT

  79. Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) J Chem Phys 114:108. doi:10.1063/1.1321305

    Article  CAS  Google Scholar 

  80. Jensen F (2007) Introduction to computational chemistry, 2nd edn. John Wiley & Sons Ltd, West Susssex, England

  81. Hudgens JW, Johnson RDI, Tsai BP, Kafafim Sherif A (1990) J Am Chem Soc 112:5763. doi:10.1021/ja00171a015

    Article  CAS  Google Scholar 

  82. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17:1

    Article  Google Scholar 

  83. Griffiths WJ, Harris FM, Barton JD (1989) Rapid Commun Mass Spectrom 3:283. doi:10.1002/rcm.1290030902

    Article  CAS  Google Scholar 

  84. Wang L, Zhang J (2008) J Phys Chem A 112:3454. doi:10.1021/jp7115752

    Article  CAS  Google Scholar 

  85. Wang L (2008) J Phys Chem A 112:4951. doi:10.1021/jp0774443

    Article  CAS  Google Scholar 

  86. Hudgens JW, Johnson RDI, Tsai BP (1993) J Chem Phys 983:1925. doi:10.1063/1.464226

    Article  Google Scholar 

Download references

Acknowledgments

We thank for the service of high performance grid computing platform SCUTGrid provided by Information Network Research and Engineering Center of South China University of Technology and financial support from NSFC (No. 20777017). LW also would like to thank an anonymous reviewer for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Wang.

Electronic supplementary material

The B3LYP/6-31G(2df,p) harmonic vibrational frequencies and ZPE corrections, G3X electronic energies, geometrical parameters of neutral methanes, and geometries of halogenated methylidyne, methylene, and methyl radicals and cations.

(PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YL., Wang, L. Cations of halogenated methanes: adiabatic ionization energies, potential energy surfaces, and ion fragment appearance energies. Struct Chem 20, 461–479 (2009). https://doi.org/10.1007/s11224-009-9444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9444-x

Keywords

Navigation