Skip to main content
Log in

Observation and interpretation of 157.5 T internal magnetic field in Fe[C(SiMe3)3]2 coordination compound

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The compound Fe[C(SiMe3)3]2 has been prepared and investigated by the means of powder X-ray diffractometry and 57Fe Mössbauer spectroscopy. The compound’s unique geometry, in which iron is linearly coordinated by the two C(SiMe3)3 ligands, results in a unusual electronic structure of iron, which is visualized as an extreme high hyperfine magnetic field of 157.5(8) T as sensed by the 57Fe nucleus at T = 20 K. In order to obtain information on the electronic structure of iron and on the bonds to the ligands, DFT (density functional theory) calculations were carried out on Fe[C(SiMe3)3]2. The high-spin state of iron was found to be energetically favored: an Fe(II) electron configuration of 3d5.83 4s0.72 is predicted, where the 4s electron density is only slightly polarized, and most of the unpaired electrons have 3d character. By assuming a linear crystal field, and associated 3d level scheme as a starting point, it is suggested that the extreme high hyperfine magnetic field, observed along with an apparently negative quadrupole splitting, is perpendicular to the C–Fe(II)–C bond axis, and can be decomposed mainly into contact (B c ≈ 44 T), dipolar (B d ≈ 14 T), and orbital (B L ≈ 99 T) hyperfine magnetic field contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reiff WM, Frommen CM, Yee GT, Sellers SP (2000) Inorg Chem 39:2076. doi:10.1021/ic990910l

    Article  CAS  Google Scholar 

  2. Andres H, Bominaar EL, Smith JM, Eckert NA, Holland PL, Münck E (2002) J Am Chem Soc 124:3012. doi:10.1021/ja012327l

    Article  CAS  Google Scholar 

  3. Reiff WM, LaPointe AM, Witten EH (2004) J Am Chem Soc 126:10206. doi:10.1021/ja030632w

    Article  CAS  Google Scholar 

  4. Vértes A, Korecz L, Burger K (1979) Mössbauer spectroscopy. Akadémiai Kiadó, Budapest

    Google Scholar 

  5. LaPointe AM (2003) Inorg Chim Acta 345:359. doi:10.1016/S0020-1693(02)01309-9

    Article  CAS  Google Scholar 

  6. Klencsár Z, Kuzmann E, Vértes A (1996) J Rad Nucl Chem 210:105. doi:10.1007/BF02055410

    Article  Google Scholar 

  7. Frisch MJ et al (2004) Gaussian 03, revision B.05. Gaussian, Inc., Wallingford CT

    Google Scholar 

  8. Preston RS, Hanna S, Heberle J (1962) Phys Rev 128:2207. doi:10.1103/PhysRev.128.2207

    Article  CAS  Google Scholar 

  9. http://orgs.unca.edu/medc/Resources-isotopes/Resource-Fe.html

  10. Cornell RM, Schwertmann U (2003) The iron oxides. Wiley VCH, Weinheim

    Book  Google Scholar 

  11. Vértes A, Nagy DL (eds) (1990) Mössbauer spectroscopy of frozen solutions. Akadémiai Kiadó, Budapest

    Google Scholar 

  12. Viefhaus T, Schwarz K, Hübler K, Locke K, Weidlein JZ (2001) Anorg Allg Chem 627:715. doi:10.1002/1521-3749(200104)627:4<715::AID-ZAAC715>3.0.CO;2-0

    Article  CAS  Google Scholar 

  13. Shenoy GK, Wagner FE (eds) (1978) Mössbauer isomer shifts. Amsterdam, North Holland

    Google Scholar 

  14. Burger K, Korecz L, Manuaba IBA, Mag P (1966) J Inorg Nucl Chem 28:1673. doi:10.1016/0022-1902(66)80068-4

    Article  CAS  Google Scholar 

  15. Danon J (1968) Lectures on the Mössbauer effect. Gordon and Breach, New York

    Google Scholar 

  16. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd, London

    Google Scholar 

  17. Dickson DPE, Berry FJ (eds) (1986) Mössbauer spectroscopy. Cambridge University Press, Cambridge

  18. Dufek P, Blaha P, Schwarz K (1995) Phys Rev Lett 75:3545. doi:10.1103/PhysRevLett.75.3545

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Hungarian Science Foundation (OTKA K068135 and K67835 and K62691). Support from the Czech-Hungarian Intergovernmental Fund, Grant No. CZ-11/2007. is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernő Kuzmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmann, E., Szalay, R., Vértes, A. et al. Observation and interpretation of 157.5 T internal magnetic field in Fe[C(SiMe3)3]2 coordination compound. Struct Chem 20, 453–460 (2009). https://doi.org/10.1007/s11224-009-9440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9440-1

Keywords

Navigation