Skip to main content
Log in

FT-IR spectra, vibrational assignments, and density functional calculations of imidazo[1,2-a]pyridine molecule and its Zn(II) halide complexes

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometry, frequency, and intensity of the vibrational bands of imidazo[1,2-a]pyridine (which is abbreviated as impy) were obtained by the density functional theory (DFT) calculations with BLYP, B3LYP, and B3PW91 functionals and 6-31G(d) basis set. The optimized geometric bond lengths and bond angles are in good agreement with the available X-ray data. The infrared spectrum of imidazo[1,2-a]pyridine was computed by the DFT method in order to reproduce the vibrational wavenumbers and intensities with an accuracy, which allows reliable vibrational assignments. Total energy distribution and isotopic shifts have been calculated in order to help for the perfect assignment of the vibrational modes. The zinc halide complexes Zn(impy)2X2 [X = Cl, Br, and I] have also been synthesized. The compounds were characterized using the elemental analysis, FT-IR spectra, and quantum chemical calculations. The geometry optimization of Zn(impy)2X2 yields distorted tetrahedral environment around Zn ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shaabani A, Soleimani A, Maleki A (2006) Tetrahedron Lett 47:3031. doi:10.1016/j.tetlet.2006.03.011

    Article  CAS  Google Scholar 

  2. Sabalayrolles C, Gros GH, Milhavet JC, Rechenq E, Chapat JP, Boucard M, McNeill JH (1984) J Med Chem 27:206. doi:10.1021/jm00368a018

    Article  Google Scholar 

  3. Kaminski JJ, Wallmark B, Briving C, Anderson BM (1991) J Med Chem 34:533. doi:10.1021/jm00106a008

    Article  CAS  Google Scholar 

  4. Rival Y, Grassy G, Michel G (1992) Chem Pharm Bull (Tokyo) 40:1170

    CAS  Google Scholar 

  5. Fischer MH, Lusi A (1972) J Med Chem 15:982. doi:10.1021/jm00279a026

    Article  Google Scholar 

  6. Mironov MA, Tokareva MI, Ivantsova MN, Mokrushin VS (2006) Russ Chem Bull 55(10):1835. doi:10.1007/s11172-006-0494-6

    Article  CAS  Google Scholar 

  7. Sorensen JRJ, Sigel H (1982) Metal ions in biological systems. 14 Marcel Dekker, New York

    Google Scholar 

  8. Miwa Y, Mizuno T, Tsuchida K, Taga T, Iwata Y (1999) Acta Crystallogr B 55:78. doi:10.1107/S0108768198007848

    Article  Google Scholar 

  9. Park JW, Paik YH (1985) Bull Korean Chem Soc 6:23. doi:10.1007/BF02698107

    Article  CAS  Google Scholar 

  10. Lerner A, Evleth EM (1972) Chem Phys Lett 15(2):260. doi:10.1016/0009-2614(72)80163-5

    Article  CAS  Google Scholar 

  11. Fischer G, Naaman R (1975) J Mol Spectrosc 57:284. doi:10.1016/0022-2852(75)90031-4

    Article  CAS  Google Scholar 

  12. Rackham DM (1979) Appl Spectrosc 33(6):561. doi:10.1366/0003702794925129

    Article  CAS  Google Scholar 

  13. Cané E, Puzzarini C, Tarroni R, Trombetti A (1995) J Chem Soc Faraday Trans 91(21):3741. doi:10.1039/ft9959103741

    Article  Google Scholar 

  14. Kohn W, Sham LJ (1965) Phys Rev A 140:1133. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  15. Liu RF, Dennis RT, Jefferey AC, Panla RM (1996) J Phys Chem 100:3430. doi:10.1021/jp9515693

    Article  CAS  Google Scholar 

  16. Zhou XF, Liu RF (1997) Spectrochim Acta [A] 53:259

    Article  Google Scholar 

  17. Nwobi O, Higgins J, Zhou XF, Liu RF (1997) Chem Phys Lett 272:155. doi:10.1016/S0009-2614(97)88002-5

    Article  CAS  Google Scholar 

  18. Zhou ZY, Du DM, Fu AP (2000) Vib Spectrosc 23:181. doi:10.1016/S0924-2031(00)00061-8

    Article  CAS  Google Scholar 

  19. Biswas N, Umapathy S (1997) J Phys Chem A 101:5555. doi:10.1021/jp970312x

    Article  CAS  Google Scholar 

  20. Özhamam Z, Yurdakul M, Yurdakul Ş (2007) Vib Spectrosc 43:335. doi:10.1016/j.vibspec.2006.04.016

    Article  Google Scholar 

  21. Arıcı K, Yurdakul M, Yurdakul Ş (2005) Spectrochim Acta [A] 61:37. doi:10.1016/j.saa.2004.03.026

    Article  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima M, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cami R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc, Wallingford CT

    Google Scholar 

  23. Dennington RII, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) Gaussview, version 3.09. Semichem, Inc, Shawnee Mission, KS

    Google Scholar 

  24. Pulay P, Baker J, Wolinski K, 2013 Green Acres Road Suite A Fayettevile Arkansas, 72703, USA

  25. Teulade JC, Escale R, Rossi JC, Chapat JP, Grassy G, Payard M (1982) Aust J Chem 35:1761

    CAS  Google Scholar 

  26. Morsy MA, Al-Khaldi MA, Suwaiyan A (2002) J Phys Chem A 106:9196

    Article  CAS  Google Scholar 

  27. Johnson BG, Gill PM, Pople JA (1993) J Chem Phys 98:5612

    Article  CAS  Google Scholar 

  28. Lee SY, Boo BH (1996) J Phys Chem A 100:15073

    CAS  Google Scholar 

  29. Morsy MA, Al-Somali MA, Suwaiyan AJ (1999) J Phys Chem B 103:11205

    Article  CAS  Google Scholar 

  30. Dik-Edixhoven CJ, Schent H, Van der Meer H (1973) Cryst Struct Commun 2:1647

    Google Scholar 

  31. Mohan S, Sundaraganesan N, Mink J (1991) Spectrochim Acta [A] 47(8):1111

    Google Scholar 

  32. Karthikeyan B (2006) Spectrochim Acta [A] 64:1083

    Article  CAS  Google Scholar 

  33. İde S, Ataç A, Yurdakul Ş (2002) J Mol Struct 605:103

    Article  Google Scholar 

  34. Clark RJ (1965) Inorg Chem 4(3):350

    Article  CAS  Google Scholar 

  35. Akyuz S, Davies JED, Dempster AB, Holmes KT (1976) J Chem Soc Dalton Trans 1746

Download references

Acknowledgements

This study was funded by the Gazi University Research Fund. We want to thank our referee for his valuable comments. We also thank Dr. M. Tahir Güllüoğlu for SQM program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şenay Yurdakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurdakul, Ş., Badoğlu, S. FT-IR spectra, vibrational assignments, and density functional calculations of imidazo[1,2-a]pyridine molecule and its Zn(II) halide complexes. Struct Chem 20, 423–434 (2009). https://doi.org/10.1007/s11224-009-9433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-009-9433-0

Keywords

Navigation