Skip to main content
Log in

Adsorption of dimethyl methylphosphonate and trimethyl phosphate on calcium oxide: an ab initio study

  • Original Paper
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio study of the adsorption of dimethyl methylphosphonate (DMMP) and trimethyl phosphate (TMP) on three types of models simulating the calcium oxide surface (non-hydroxylated Ca4O4, completely hydroxylated Ca4O4(OH)2H2, and partially hydroxylated Ca4O4(OH)H) was performed. The target molecule and the surface hydroxyl groups were optimized while the CaO fragment was kept frozen. The intermolecular interactions were investigated applying Bader’s Atoms in Molecules theory. The maps of electrostatic potential of the studied adsorption systems were also produced. The interaction energies of studied adsorption systems corrected by the basis set superposition error were obtained. The most energetically favorable adsorption of DMMP and TMP was found at the configuration where the oxygen atoms of the P=O and methoxy groups point toward the Ca cation of the surface. The P atom points toward the O atom of the surface and forms a P–O chemical bond. This configuration was revealed for the non-hydroxylated and partially hydroxylated CaO-DMMP and CaO-TMP systems. The presence and number of surface hydroxyl groups on the CaO models play a key role in the adsorption of the studied compounds. DMMP and TMP were found to be much less stable on the completely hydroxylated CaO surface where they are adsorbed only via weak electrostatic interactions and H-bonding to the surface oxygen atoms and hydroxyl groups. TMP was found to be slightly more stable on this type of surface than DMMP. The difference in stability is even larger if one compares this TMP system with the complex of tabun adsorbed on completely hydroxylated CaO surface model (Michalkova et al. Chem Phys Lett 438:72, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://en.wikipedia.org/wiki/Dimethyl_methylphosphonate

References

  1. Dale TJ, Rebek J Jr (2006) J Am Chem Soc 128:4500

    Article  CAS  Google Scholar 

  2. Hill CM, Li W-S, Thoden JB, Holden HM, Raushel FM (2003) J Am Chem Soc 125:8990

    Article  CAS  Google Scholar 

  3. Yang Y, Ji H-F, Thundat T (2003) J Am Chem Soc 125:1124

    Article  CAS  Google Scholar 

  4. Mitchel MB, Sheinker VN, Mintz EA (1997) J Phys Chem B 101:11192

    Article  Google Scholar 

  5. Smentkowski VS, Hagans P, Yates JT (1998) J Phys Chem 92:6351

    Article  Google Scholar 

  6. EA, Japan (1994) Investigation of the ecotoxicological effects of OECD high production volume chemicals. Office of Health Studies, Environmental Health Department, Environment Agency, Japan (HPV/SIDS Test conducted by EA, Japan)

  7. Bomhard EM, Krinke GJ, Rossberg WM, Skripsky Th (1997) Fundam Appl Toxicol 40:75

    Article  CAS  Google Scholar 

  8. Oishi H, Oishi S, Hiraga K (1982) Toxicol Lett 13(1–2):29

    CAS  Google Scholar 

  9. Yu C, Hao Q, Saha S, Shi L (2005) Appl Phys Lett 86:063101

    Google Scholar 

  10. Medine GM, Zaikovski V, Klabunde KJ (2004) J Mater Chem 14:757

    Article  CAS  Google Scholar 

  11. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic I, Zhang D (1996) J Phys Chem 100:12142

    Article  CAS  Google Scholar 

  12. Khaleel A, Kapoor PN, Klabunde KJ (1999) NanoStruct Mater 11(4):459

    Article  CAS  Google Scholar 

  13. Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) J Phys Chem B 103:3225

    Article  CAS  Google Scholar 

  14. Wagner GW, Procell LR, O’Conor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) J Am Chem Soc 123:1636

    Article  CAS  Google Scholar 

  15. Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) J Phys Chem B 104:5118

    Article  CAS  Google Scholar 

  16. Atteya M, Klabunde K (1991) J Chem Mater 3(1):182

    Article  CAS  Google Scholar 

  17. Lucas EM, Klabunde KJ (1999) NanoStruct Mater 12:179

    Article  Google Scholar 

  18. Heroux DS, Volodin AM, Zaikovski VI, Chesnokov VV, Bedilo AF, Klabunde KJ (2004) J Phys Chem B 108:3140

    Article  CAS  Google Scholar 

  19. Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V, Volodin A, Rieker T, Klabunde KJ (2000) J Am Chem Soc 122:4921

    Article  CAS  Google Scholar 

  20. Li YX, Klabunde K (1992) J Chem Mater 4(3):611

    Article  CAS  Google Scholar 

  21. Martin ME, Narske RM, Klabunde KJ (2005) Microporous Mesoporous Mater 83:47

    Article  CAS  Google Scholar 

  22. Decker SP, Klabunde JS, Khaleel A, Klabunde KJ (2002) Environ Sci Technol 36(4):762

    Article  CAS  Google Scholar 

  23. Jiang Y, Decker S, Mohs C, Klabunde KJ (1998) J Catal 180:24

    Article  CAS  Google Scholar 

  24. Oh SW, Kim YH, Yoo DJ, Oh SM, Park SJ (1993) Sens Actuators B: Chem 13(1–3):400

    Article  CAS  Google Scholar 

  25. Li Y-X, Schlup JR, Klabunde KJ (1991) Langmuir 7:1394

    Article  CAS  Google Scholar 

  26. Li Y-X, Klabunde KJ (1991) Langmuir 7:1388

    Article  CAS  Google Scholar 

  27. Li Y-X, Koper O, Atteya M, Klabunde KJ (1992) Chem Mater 4:323

    Article  CAS  Google Scholar 

  28. Zhanpeisov NU, Zhidomirov GM, Yudanov IV, Klabunde KJ (1994) J Phys Chem 98:10032

    Article  CAS  Google Scholar 

  29. Michalkova A, Ilchenko M, Gorb L, Leszczynski J (2004) J Phys Chem B 108:5294

    Article  CAS  Google Scholar 

  30. Michalkova A, Paukku Y, Majumdar D (2007) Chem Phys Lett 438:72

    Article  CAS  Google Scholar 

  31. Mitchell MB, Sheinker VN, Tesfamichael AB, Gatimu EN, Nunley M (2003) J Phys Chem B 107:580

    Article  CAS  Google Scholar 

  32. Segal SR, Cao L, Suib SL, Tang X, Satyapal S (2001) J Catal 198(1):66

    Article  CAS  Google Scholar 

  33. Kanan SM, Lu Z, Tripp CP (2002) J Phys Chem B 106(37):9576

    Article  CAS  Google Scholar 

  34. Mitchell MB, Sheinker VN, Cox WW, Gatimu EN, Tesfamichael AB (2004) J Phys Chem B 108(5):1634

    Article  CAS  Google Scholar 

  35. Tesfai TM, Sheinker VN, Mitchell M (1998) J Phys Chem B 102(38):7299

    Article  CAS  Google Scholar 

  36. Kanan SM, Tripp CP (2001) Langmuir 17:2213

    Article  CAS  Google Scholar 

  37. Bermudez VC (2007) J Phys Chem C 111(26):9314

    Article  CAS  Google Scholar 

  38. Henderson MA, Jin T, White JM (1986) J Phys Chem 90:4607

    Article  CAS  Google Scholar 

  39. Moss JA, Szcsepankiewicz SH, Park E, Hoffmann MR (2005) J Phys Chem B 109(42):19779

    Article  CAS  Google Scholar 

  40. Trubitsyn DA, Vorontsov AV (2005) J Phys Chem B 109:21884

    Article  CAS  Google Scholar 

  41. Rusu CN, Yates JT (2000) J Phys Chem B 104:12292

    Article  CAS  Google Scholar 

  42. Zhou J, Varazo K, Reddic JE, Myrick ML, Chen DA (2003) Analytica Chimica Acta 496:289

    Article  CAS  Google Scholar 

  43. Bermudez VC (2007) J Phys Chem C 111(9):3719

    Article  CAS  Google Scholar 

  44. Van Wazer JR, Ewig CS (1986) J Am Chem Soc 108:4354

    Article  Google Scholar 

  45. Georg L, Viswanathan KS, Singh S (1997) J Phys Chem A 101(13):2459

    Article  Google Scholar 

  46. Khetrapal CL, Govil G, Yeh HJC (1984) J Mol Struct 116(3–4):303

    Article  CAS  Google Scholar 

  47. Taga K, Hirabayashi N, Yoshida T, Okabayashi H (1989) J Mol Struct 212:157

    Article  CAS  Google Scholar 

  48. Streck R, Barnes AJ, Herrebout WA, van der Veken BJ (1996) J Mol Struct 376:277

    Article  CAS  Google Scholar 

  49. Streck R, Barnes AJ (1999) Spectrochimica Acta Part A 55:1049

    Article  Google Scholar 

  50. Streck R, Barnes AJ (1999) Spectrochimica Acta Part A 55:1059

    Article  Google Scholar 

  51. Tekin N, Cebe M (2004) Vib Spectrosc 36:129

    Article  CAS  Google Scholar 

  52. Reva I, Simao A, Fausto R (2005) Chem Phys Lett 406:126

    Article  CAS  Google Scholar 

  53. Korobeinichev OP, Ilyin SB, Shvartsberg VM, Chernov AA (1999) Combust Flame 118:718

    Article  CAS  Google Scholar 

  54. Korobeinichev OP, Shvartsberg VM, Chernov AA (1999) Combust Flame 118:727

    Article  CAS  Google Scholar 

  55. Kozlova EA, Smirniotis PG, Vorontsov AV (2004) J Photochem Photobiol A: Chem 162(2–3):503

    Article  CAS  Google Scholar 

  56. Kozlova EA, Vorontsov AV (2006) Appl Catal B: Environ 63:114

    CAS  Google Scholar 

  57. Gay ID, McFarlan AJ, Morrow BA (1991) J Phys Chem 95:1360

    Article  CAS  Google Scholar 

  58. Kanan SM, Tripp CP (2002) Langmuir 18:722

    Article  CAS  Google Scholar 

  59. Kim CS, Lad RJ, Tripp CP (2001) Sens Actuators B: Chem 76(1–3):442

    Article  Google Scholar 

  60. Waghe A, Kanan SM, Abu-Youself I, Jensen B, Tripp CP (2006) Res Chem Intermediat 32(7):613

    Article  CAS  Google Scholar 

  61. Gordon WO, Tissue BM, Morris JR (2007) J Phys Chem C 111:3233

    Article  CAS  Google Scholar 

  62. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Univ. Press, Oxford

    Google Scholar 

  63. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  64. Head-Gordon M, Pople JA, Frisch M (1988) J Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  65. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  66. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281

    Article  CAS  Google Scholar 

  67. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122

    Article  CAS  Google Scholar 

  68. Ditchfield R, Hehre EJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  69. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  70. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  71. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  72. Popelier PLA (1998) J Phys Chem A 102:1873

    Article  CAS  Google Scholar 

  73. Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman VG, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) In: Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA

  74. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT

  75. Lucas E, Decker S, Khallel A, Seitz A, Fultz S, Ponce A, Li W, Carnes C, Klabunde KJ (2001) Chem-Eur J 7:2505

    Article  CAS  Google Scholar 

  76. Pelmenshikov AG, Morosi G, Gamba A, Coluccia S (1995) J Phys Chem 99:15018

    Article  Google Scholar 

  77. Mitchell MB, Sheinker VN, Mintz EA (1997) J Phys Chem B 101:11192

    Article  CAS  Google Scholar 

  78. Kiselev A, Mattson A, Andersson M, Palmqvist AEC, Oeserlund L (2006) J Photochem Photobiol A: Chem 184(1–2):125

    Article  CAS  Google Scholar 

  79. Solans-Monfort X, Sodupe M, Branchadell V, Sauer J, Orlando R, Ugliengo P (2005) J Phys Chem B 109:3539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was facilitated by the support of the Chemical Materials Computational Modeling (CMCM) funded by the Department of Defense through the U. S. Army Engineer Research and Development Center (Vicksburg, MS) grant number W912HZ-04-2-0002, the Office of Naval Research grant number N00034-03-1-0116, the content of which does not necessarily reflect the position or policy of the government, and no official endorsement should be inferred. This work was also facilitated by use of the Network Visualization System for Computational Chemistry (NVSCC) (http://www.ccmsi.us/nvscc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leszczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paukku, Y., Michalkova, A. & Leszczynski, J. Adsorption of dimethyl methylphosphonate and trimethyl phosphate on calcium oxide: an ab initio study. Struct Chem 19, 307–320 (2008). https://doi.org/10.1007/s11224-008-9287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9287-x

Keywords

Navigation