Skip to main content
Log in

Preparation, molecular structure, and thermal analyses of a novel coordination compound [Cd(AZT)4(H2O)2](PA)2 · 4H2O (AZT = 3-azido-1,2,4-triazole, PA = picrate)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of 3-azido-1,2,4-triazole (AZT) has been determined. A novel coordination compound [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been synthesized by using 3-azido-1,2,4-triazole as ligand, and its structure has been characterized by using X-ray single crystal diffraction, elemental analysis, and FT-IR spectroscopy. Each cadmium (II) center is coordinated with four N atoms of four AZT molecules and two O atoms of two H2O molecules to form a slightly distorted octahedron. The optimized molecular structure and NBO charges of 3-azido-1,2,4-triazole have been obtained from the density functional theory (DFT) with the B3LYP method employing the 6-311 + G** basis sets. Thermal decomposition mechanism of [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been predicted based on DSC, TG-DTG, and FT-IR analyses. The kinetic parameters of the first exothermic process of [Cd(AZT)4(H2O)2](PA)2 · 4H2O were studied by applying the Kissinger’s and Ozawa-Doyle’s methods.

Index Abstract

A novel coordination compound [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been synthesized by using 3-azido-1,2,4-triazole as ligand and its structure has been characterized by using X-ray single crystal diffraction, elemental analysis, and FT-IR spectroscopy. Each cadmium (II) center is coordinated to form a slightly distorted octahedron. Thermal decomposition mechanism of [Cd(AZT)4(H2O)2](PA)2 · 4H2O has been predicted based on DSC, TG-DTG, and FT-IR analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhai QG, Wu XY, Chen SM, Lu CZ, Yang WB (2006) Cryst Growth Design 6:2127

    Google Scholar 

  2. Haasnoot JG (2000) Coordin Chem Rev 200–202:131

    Article  Google Scholar 

  3. Shiu KB, Guo WN, Peng SM, Cheng MC (1994) Inorg Chem 33:3010

    Article  CAS  Google Scholar 

  4. Romero MA, Salas JM, Quiros M, Sanchez MP, Molina J, Bahraoui JE, Faure R (1995) J Mol Struct 345:189

    Article  Google Scholar 

  5. Haasnoot JG, Driessen WL, Reedijk J (1984) Inorg Chem 23:2803

    Article  CAS  Google Scholar 

  6. Dillen J, Lenstra ATH, Haasnoot JG, Reedijk J (1983) Polyhedron 2:195

    Article  CAS  Google Scholar 

  7. Pei Y, Lang A, Bergerat P, Kahn O, Fettouhi M, Ouahab L (1996) Inorg Chem 35:193

    Article  CAS  Google Scholar 

  8. Kunkeler PJ, Van Koningsbruggen PJ, Cornelissen JP, Van der Horst AN, Van der Kraan AM, Spek AL, Haasnoot JG, Reedijk J (1996) J Am Chem Soc 118:2190

    Article  CAS  Google Scholar 

  9. Janiak C, Scharmann TG, Bräuniger T, Holubová J, Nadvornik M (1998) Z Anorg Allg Chem 624:769

    Article  CAS  Google Scholar 

  10. Vreugdenhil W, Haasnoot JG, Kahn O, Thuéry P, Reedijk J (1987) J Am Chem Soc 109:5272

    Article  CAS  Google Scholar 

  11. Trofimenko S (1972) Chem Rev 72:497

    Article  CAS  Google Scholar 

  12. Lynch M, Hyde KE, Bocko PL, Kokoszka GF (1977) Inorg Chem 16:562

    Article  CAS  Google Scholar 

  13. Inoue M, Emori S, Kubo M (1968) Inorg Chem 7:1427

    Article  CAS  Google Scholar 

  14. Inoue M, Kishita M, Kubo M (1965) Inorg Chem 4:626

    Article  CAS  Google Scholar 

  15. Hage R, Haasnoot JG, Nieuwenhuis HA, Reedijk J, de Ridder DJA, Vos JG (1990) J Am Chem Soc 112:9245

    Article  CAS  Google Scholar 

  16. Kröber J, Codjovi E, Kahn O, Grolière F, Jay C (1993) J Am Chem Soc 115:9810

    Article  Google Scholar 

  17. Janiak C, Scharmann TG, Bräuniger T, Holubová J, Nádvorník M (1998) Z Anorg Allg Chem 624:769

    Article  CAS  Google Scholar 

  18. Yi L, Ding B, Zhao B, Cheng P, Liao DZ, Yan SP, Jiang ZH (2004) Inorg Chem 43:33

    Article  CAS  Google Scholar 

  19. Du JY (2004) Transit Metal Chem 29:699

    Article  CAS  Google Scholar 

  20. Bichay M, Fronabarger JW, Gilardi R, Butcher RJ, Sanborn WB, Sitzmanna ME, Williams MD (2006) Tetrahedron Lett 47:6663

    Article  CAS  Google Scholar 

  21. Liu JC, Guo GC, Huang JS, You XZ (2003) Inorg Chem 42:235

    Article  CAS  Google Scholar 

  22. Zhou JH, Cheng RM, Song Y, Li YZ, Yu Z, Chen XT, Xue ZL, You XZ (2005) Inorg Chem 44:8011

    Article  CAS  Google Scholar 

  23. Ugryumov IA, Ilyushin MA, Tselinskii IV, Kozlov AS (2003) Russ J Appl Chem 76:439

    Article  CAS  Google Scholar 

  24. Chernai AV, Sobolev VV, Chernai VA, Ilyushin MA, Dlugashek A (2003) Combust Explo Shock Waves 39:335

    Article  Google Scholar 

  25. Zhang JG, Zhang TL, Liu YH (2005) Chinese J Chem 23:1403

    Article  CAS  Google Scholar 

  26. Ma GX, Zhang TL, Zhang JG, Yu KB (2004) Z Anorg Allg Chem 630:423

    Article  CAS  Google Scholar 

  27. Zhang JG, Zhang TL, Yang L, Mao LQ (2002) Chinese J Inorg Chem 18:284

    Google Scholar 

  28. Zhang JG, Zhang TL, Lu Z, Yu KB (1999) Acta Chim Sinica 57:1233

    CAS  Google Scholar 

  29. Zhang TL, Hu RZ, Li FP, Yu KB (1994) Acta Chim Sinica 52:545

    CAS  Google Scholar 

  30. Zhang JG, Zhang TL (2000) Acta Chim Sinica 58:1563

    CAS  Google Scholar 

  31. Zhang JG, Zhang TL (2000) Acta Phys-Chim Sinica 16:1110

    CAS  Google Scholar 

  32. Zhang TL, Zhang JG, Zhang ZG (2000) Acta Chim Sinica 58:533

    CAS  Google Scholar 

  33. Hammerl A, Klapötke TM, Nöth H, Warchhold M, Holl G (2003) Propellants Explos Pyrotech 28:165

    Article  CAS  Google Scholar 

  34. Hammerl A, Klapötke TM, Mayer P, Weigand JJ, Holl G (2005) Propellants Explos Pyrotech 30:17

    Article  CAS  Google Scholar 

  35. Xue H, Shreeve JM (2005) Adv Mater 17:2142

    Article  CAS  Google Scholar 

  36. Denault GC, Marx PC, Takimoto HH (1968) J Chem Eng Data 13:514

    Article  CAS  Google Scholar 

  37. Xue H, Gao Y, Twamley B, Shreeve JM (2005) Chem Mater 17:191

    Article  CAS  Google Scholar 

  38. Xue H, Gao Y, Twamley B, Shreeve JM (2005) Inorg Chem 44:5068

    Article  CAS  Google Scholar 

  39. Kofman TP, Krasnov KN (2004) Russ J Org Chem 40:1651

    Article  CAS  Google Scholar 

  40. Sheldrick GM (1997) SHELXS-97. University of Göttingen, Germany

    Google Scholar 

  41. Sheldrick GM (1997) SHELXL-97. University of Göttingen, Germany

    Google Scholar 

  42. Becke A (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Lee C, Wang W, Parr RG (1988) Phys Rev B37:785

    Google Scholar 

  44. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE (1998) GAUSSIAN 98, revision A7. Gaussian, Inc., Pittsburgh PA

  46. Tarver CM, Goodale TC, Cowperthwaite M, Hill ME (1977) AD-A044714

  47. Zhang JG, Zhang TL, Yu KB (2001) Acta Chim Sinica 59:84

    Article  CAS  Google Scholar 

  48. Zhang JG, Zhang TL, Yang L, Mao LQ (2002) Chinese J Inorg Chem 18:284

    Google Scholar 

Download references

Acknowledgments

This work is supported by NSAF Foundation (No. 10776002) of National Natural Science Foundation of China and China Academy of Engineering Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Lai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Zhang, T.L., Zhang, J.G. et al. Preparation, molecular structure, and thermal analyses of a novel coordination compound [Cd(AZT)4(H2O)2](PA)2 · 4H2O (AZT = 3-azido-1,2,4-triazole, PA = picrate). Struct Chem 19, 269–278 (2008). https://doi.org/10.1007/s11224-008-9282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9282-2

Keywords

Navigation