Skip to main content
Log in

Theoretical studies on the infrared spectrum of the tetrahedral molecules R2MH2 (R = D(H), CH3, OH; M = Ti, Zr, Hf)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using Stuttgart/Dresden effective core potentials MWB28, MWB60, and GTO valence basis sets (8s7p6d)/[6s5p3d], (8s7p6d)/[6s5p3d] for Zr and Hf atoms and 6-311++G(3df,3pd) basis set for C, H, O, and Ti atoms, tight convergence criteria geometry optimizations and harmonic frequency calculations are performed at B3LYP and B3LYP/IEF-PCM levels of theory so as to model the gas phase and argon matrix infrared spectra of the tetrahedral molecules R2MH2 (R = D(H), CH3, OH; M = Ti, Zr, Hf). Influence of the transition metal and/or substituent group on the symmetric and asymmetric stretching frequencies of the MH2 fragment of the R2MH2 molecules is investigated at both the levels of theory. The modelling of the argon matrix effect improves the agreement between the calculated frequencies and the experimental ones. The calculated argon matrix to gas phase frequency shifts is compared reasonably to the experimental argon to neon matrix shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chertihin GV, Andrews L (1994) J Am Chem Soc 116:8322

    Article  CAS  Google Scholar 

  2. Chertihin GV, Andrews L (1995) J Phys Chem 99:15004

    Article  CAS  Google Scholar 

  3. Andrews L, Cho H-G, Wang X (2005) Inorg Chem 44:4834

    Article  CAS  Google Scholar 

  4. Cho H-G, Wang X, Andrews L (2005) J Am Chem Soc 127:465

    Article  CAS  Google Scholar 

  5. Cho H-G, Wang X, Andrews L (2005) Organometallics 24:2854

    Article  CAS  Google Scholar 

  6. Zhou M, Zhang L, Dong J, Qin Q (2000) J Am Chem Soc 122:10680

    Article  CAS  Google Scholar 

  7. Barnes AJ, Lasson E, Nielsen CJ (1994) J Mol Struct 322:165

    Article  CAS  Google Scholar 

  8. Guilmot J-M, Godefroid M, Herman M (1993) J Mol Spectrosc 160:387

    Article  CAS  Google Scholar 

  9. Mielke Z, Talik T, Tokhadze KG (1999) J Mol Struct 484:207

    Article  CAS  Google Scholar 

  10. Mielke Z, Coussan S, Mierzwicki K, Roubin P, Saldyka M (2006) J Phys Chem A 110:4712

    Article  CAS  Google Scholar 

  11. Liu G, Zhang X (2007) J Mol Struct (Theochem) 807:179

    Article  CAS  Google Scholar 

  12. Liu G, He T (2007) J Mol Struct (Theochem) 817:55

    Article  CAS  Google Scholar 

  13. Liu G, Zhang X (2007) J Mol Struct (Theochem) 817:147

    Article  CAS  Google Scholar 

  14. Liu G, Zhao Y (2007) J Mol Struct (Theochem) 821:173

    Article  CAS  Google Scholar 

  15. Thomas JR, Quelch GE, Seidl ET, Schaefer HF III (1992) J Chem Phys 96:6857

    Article  CAS  Google Scholar 

  16. Frisch MJ et al (2004) Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford

  17. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  19. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  20. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  Google Scholar 

  21. Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct (Theochem) 464:211

    Article  CAS  Google Scholar 

  22. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  23. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  24. Csaszar P, Pulay P (1984) J Mol Struct (Theochem) 114:31

    CAS  Google Scholar 

  25. Farkas Ö, Schlegel HB (1999) J Chem Phys 111:10806

    Article  CAS  Google Scholar 

  26. Barnes AJ, Latajka Z, Biczysko M (2002) J Mol Struct 614:11

    Article  CAS  Google Scholar 

  27. Silvi B, Wieczorek R, Latajka Z, Alikhani ME, Dkhissi A, Bouteiller Y (1999) J Chem Phys 111:6671

    Article  CAS  Google Scholar 

  28. Del Bene JE, Jordan MJT (1998) J Chem Phys 108:3205

    Article  Google Scholar 

  29. Johnson GL, Andrews L (1982) J Am Chem Soc 104:3043

    Article  CAS  Google Scholar 

  30. Andrews L, Wang X (2001) J Phys Chem A 105:7541

    Article  CAS  Google Scholar 

  31. Xiao ZL, Hauge RH, Margrave JL (1991) J Phys Chem 95:2696

    Article  CAS  Google Scholar 

  32. Jacox ME (1994) Chem Phys 189:149

    Article  CAS  Google Scholar 

  33. WebElements™ periodic table. http://www.webelements.com/

  34. Talik T, Tokhadze KG, Mielke Z (2002) J Mol Struct 611:95

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Natural Science Research Foundation of the Education Department of Henan Province of China (Grant No. 2007150047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Zhao, Y. Theoretical studies on the infrared spectrum of the tetrahedral molecules R2MH2 (R = D(H), CH3, OH; M = Ti, Zr, Hf). Struct Chem 19, 247–256 (2008). https://doi.org/10.1007/s11224-007-9279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-007-9279-2

Keywords

Navigation