Skip to main content

Advertisement

Log in

Hydrogen Bonding Interactions of Radicals

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Hydrogen bonding interactions of organic radicals are systematically studied using diverse ab initio and density functional theory (DFT) methods. It is found that open-shell hydrogen bonds with radical proton donors are more difficult to model than those with radical proton acceptors. The DFT methods perform significantly worse than the unrestricted second order Möller-Plesset perturbation (UMP2) method in both geometry optimization and interaction energy calculations for the open-shell hydrogen bonds. The UB3LYP method seriously underestimates the donor-acceptor distances and overestimates interaction energies for the open-shell hydrogen bonds with radical proton donors. Nevertheless, use of the UBH&HLYP functional to study the open-shell hydrogen bonds is still acceptable. Furthermore, it is necessary to use sufficiently flexible basis sets, such as 6-311++G(2df,2p), to get reliable interaction energies for the open-shell hydrogen bonds. The open-shell proton donors are stronger Lewis acids than the corresponding closed-shell proton donors. The open-shell proton acceptors are weaker Lewis bases than the corresponding closed-shell proton acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheiner, S. Hydrogen Bonding; Oxford University Press, New York, 1997.

    Google Scholar 

  2. Some recent interesting reviews: (a) Qi, Z.-Q.; Shao, X.-B.; Zhao, X.; Li, X.-Q.; Wang, X.-Z.; Zhang, W.-X.; Jiang, X.-K.; Li, Z.-T. Chin. J. Org. Chem. 2003, 23, 403. (b) Karpfen, A. Adv. Chem. Phys. 2002, 123, 469. (c) Dannenberg, J. J. J. Mol. Struct. 2002, 615, 219. (d) Steiner, T. Angew. Chem. Int. Ed. 2002, 41, 48. (e) Henri-Rousseau, O.; Blaise, P.; Chamma, D. Adv. Chem. Phys. 2002, 121, 241. (f) Sponer, J. V.; Leszczynski, J.; Hobza, P. Theochem 2001, 573, 43.

    Google Scholar 

  3. Some examples: (a) De Visser, S. P.; Shaik, S. J. Am. Chem. Soc. 2003, 125, 7413. (b) Grimaldi, S.; Ostermann, T.; Weiden, N.; Mogi, T.; Miyoshi, H.; Ludwig, B.; Michel, H.; Prisner, T. F.; MacMillan, F. Biochemistry 2003, 42, 5632. (c) Whittaker, J. W. Chem. Rev. 2003, 103, 2347.

  4. Some examples: (a) Gray, M.; Goodman, A. J.; Carroll, J. B.; Bardon, K.; Markey, M.; Cooke, G.; Rotello, V. M. Org. Lett. 2004, 6, 385. (b) Tan, L.; Chen, S.-M.; Yan, X.-M.; Ping, Z.-H.; Shen, Y.-M. Chem. J. Chin. Univ. 2003, 24, 1114. (c) Lucarini, M.; Mugnaini, V.; Pedulli, G. F.; Guerra, M. J. Am. Chem. Soc. 2003, 125, 8318. (d) Wang, L.-F.; Zhang, H.-Y. Chin. J. Chem. 2003, 21, 1669.

    Google Scholar 

  5. (a) Espinosa-Garcia, J. J. Am. Chem. Soc. 2004, 126, 920. (b) Chen, D.-Z.; Yang, Z.-N.; Wang, D.-P.; Meng, L. Acta Chim. Sin. 2003, 61, 1213. (c) Yu, H.-T.; Chi, Y.-J.; Fu, H.-G.; Li, Z.-S.; Sun, J.-Z. Chin. J. Chem. 2003, 21, 244. (d) Ramirez-Arizmendi, L. E.; Heidbrink, J. L.; Guler; L. P.; Kenttaemaa, H. I. J. Am. Chem. Soc. 2003, 125, 2272.

    Google Scholar 

  6. (a) Dorlet, P.; Seibold, S. A.; Babcock, G. T.; Gerfen, G. J.; Smith, W. L.; Tsai, A.; Un, S. Biochemistry 2002, 41, 6107. (b) Song, J. K.; Lee, N. K.; Kim, S. K. J. Chem. Phys. 2002, 117, 1589. (c) Fujii, A.; Ebata, T.; Mikami, M. J. Phys. Chem. A 2002, 106, 8554.

  7. Recent examples: (a) Dibble, T. S. J. Phys. Chem. A 2004, 108, 2199. (b) Fu, H.; Zhou, Z.; Zhou, X. Chem. Phys. Lett. 2003, 382, 466. (d) Wang, B.-Q.; Li, Z.-R.; Wu, D.; Hao, X.-Y.; Li, R.-J.; Sun, C.-C. Chem. Phys. Lett. 2003, 375, 91. (e) Lucarini, M.; Mugnaini, V.; Pedulli, G. F.; Guerra, M. J. Am. Chem. Soc. 2003, 125, 8318. (f) Zheng, W.-X.; Pu, X.-M.; Wang, X.-Z.; Tian, A.-M. Acta Chim. Sin. 2003, 61, 336.

  8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y. Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.

    Google Scholar 

  9. (a) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. (b) Wang, W.-Z.; Pu, X.-M.; Zheng, W.-X.; Wong, N.-B.; Tian, A.-M. Chin. J. Chem. 2003, 21, 1586.

  10. For a nice description of the disperson force problem, please read: Zimmerli, U.; Parrinello, M.; Koumoutsako, P. J. Chem. Phys. 2004, 120, 2693.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Liu or Qing-Xiang Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, XJ., Liu, L., Fu, Y. et al. Hydrogen Bonding Interactions of Radicals. Struct Chem 16, 347–353 (2005). https://doi.org/10.1007/s11224-005-4465-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-005-4465-6

Keywords

Navigation