Skip to main content
Log in

On Suitability of the Averaged Strain Energy Density Criterion in Predicting Mixed Mode I/II Brittle Fracture of Blunt V-Notches with Negative Mode I Contributions

  • Published:
Strength of Materials Aims and scope

The main goal of the present research is to check the suitability of the well-known brittle fracture criterion, namely the averaged strain energy density (ASED), in predicting mixed mode I/II brittle fracture of round V-notches under negative mode I conditions. For this purpose, it is attempted for the first time to theoretically predict the fracture loads of numerous round-tip V-notched Brazilian disk (RV-BD) specimens made of PMMA and subjected to mixed mode I/II loading with negative mode I contributions that have been most recently reported in the open literature. It is revealed that ASED criterion is suitable for brittle fracture prediction not only under conventional mixed mode I/II loading conditions, but also under mixed mode I/II loading with negative mode I contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. L. Susmel and D. Taylor, “On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features,” Eng. Fract. Mech., 75, 4410–4421 (2008).

    Article  Google Scholar 

  2. D. Taylor, “Predicting the fracture strength of ceramic materials using the theory of critical distances,” Eng. Fract. Mech., 71, 2407–2416 (2004).

    Article  Google Scholar 

  3. S. Kasiri and D. Taylor, “A critical distance study of stress concentrations in bone,” J. Biomech., 41, 603–609 (2008).

    Article  Google Scholar 

  4. M. R. Ayatollahi and A. R. Torabi, “Brittle fracture in rounded-tip V-shaped notches,” Mater. Design, 31, 60–67 (2010).

    Article  CAS  Google Scholar 

  5. M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched polycrystalline graphite specimens,” Carbon, 48, 2255–2265 (2010).

    Article  CAS  Google Scholar 

  6. A. R. Torabi, “Fracture assessment of U-notched graphite plates under tension,” Int. J. Fracture, 181, 285–292 (2013).

    Article  Google Scholar 

  7. A. R. Torabi, M. Fakoor, and E. Pirhadi, “Tensile fracture in coarse-grained polycrystalline graphite weakened by a U-shaped notch,” Eng. Fract. Mech., 111, 77–85 (2013).

    Article  Google Scholar 

  8. A. R. Torabi and S. H. Amininejad, “Brittle fracture in V-notches with end holes,” Int. J. Damage Mech., 24, 529–545 (2014), https://doi.org/10.1177/1056789514538293.

    Article  CAS  Google Scholar 

  9. M. R. Ayatollahi and A. R. Torabi, “A criterion for brittle fracture in U-notched components under mixed mode loading,” Eng. Fract. Mech., 76, 1883–1896 (2009).

    Article  Google Scholar 

  10. M. R. Ayatollahi and A. R. Torabi, “Investigation of mixed mode brittle fracture in rounded-tip V-notched components,” Eng. Fract. Mech., 77, 3087–3104 (2010).

    Article  Google Scholar 

  11. M. R. Ayatollahi and A. R. Torabi, “Experimental verification of RV-MTS model for fracture in soda-lime glass weakened by a V-notch,” J. Mech. Sci. Technol., 25, 2529–2534 (2011).

    Article  Google Scholar 

  12. M. R. Ayatollahi and A. R. Torabi, “Failure assessment of notched polycrystalline graphite under tensile-shear loading,” Mater. Sci. Eng. A, 528, 5685–5695 (2011).

    Article  CAS  Google Scholar 

  13. A. R. Torabi, “Sudden fracture from U-notches in fine-grained isostatic graphite under mixed mode I/II loading,” Int. J. Fracture, 181, 309–316 (2013).

    Article  Google Scholar 

  14. M. R. Ayatollahi, A. R. Torabi, and P. Azizi, “Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch,” Exp. Mech., 51, 919–932 (2010).

    Article  Google Scholar 

  15. A. R. Torabi, M. Fakoor, and E. Pirhadi, “Fracture analysis of U-notched disc-type graphite specimens under mixed mode loading,” Int. J. Solids Struct., 51, 1287–1298 (2014).

    Article  CAS  Google Scholar 

  16. A. R. Torabi and E. Pirhadi, “Stress-based criteria for brittle fracture in key-hole notches under mixed mode loading,” Eur. J. Mech. A-Solid., 49, 1–12 (2015).

    Article  Google Scholar 

  17. A. R. Torabi, S. M. Abedinasab, “Brittle fracture in key-hole notches under mixed mode loading: Experimental study and theoretical predictions,” Eng. Fract. Mech., 134, 35–53 (2015).

    Article  Google Scholar 

  18. M. R. Ayatollahi and A. R. Torabi, “Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen,” Int. J. Solids Struct., 47, 454–465 (2010).

    Article  Google Scholar 

  19. P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fracture, 112, 275–298 (2001).

    Article  Google Scholar 

  20. F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R, 75, 1–48 (2014).

    Article  Google Scholar 

  21. F. Berto, A. Campagnolo, and M. R. Ayatollahi, “Brittle fracture of rounded V-notches in isostatic graphite under static multiaxial loading,” Phys. Mesomech., 18, 283–297 (2015).

    Article  Google Scholar 

  22. M. R. M. Aliha, F. Berto, A. Mousavi, and N. Razavi, “On the applicability of ASED criterion for predicting mixed mode I+II fracture toughness results of a rock material,” Theor. Appl. Fract. Mech., 92, 198–204 (2017).

    Article  Google Scholar 

  23. A. R. Torabi, F. Berto, and N. Razavi, “Tensile failure prediction of U-notched plates under moderate-scale and large-scale yielding regimes,” Theor. Appl. Fract. Mech., 97, 434–439 (2018).

    Article  CAS  Google Scholar 

  24. A. R. Torabi, F. Berto, and N. Razavi, “Ductile failure prediction of thin notched aluminum plates subjected to combined tension-shear loading,” Theor. Appl. Fract. Mech., 97, 280–288 (2018).

    Article  CAS  Google Scholar 

  25. H. R. Majidi, A. R. Torabi, M. Zabihi, et al., “Energy-based ductile failure predictions in cracked friction-stir welded joints,” Eng. Fail. Anal., 102, 327–337 (2019).

    Article  CAS  Google Scholar 

  26. F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Design, 41, 421–432 (2012).

    Article  CAS  Google Scholar 

  27. F. J. Gomez, M. Elices, and A. Valiente, “Cracking in PMMA containing U-shaped notches,” Fatigue Fract. Eng. Mater. Struct., 23, 795–803 (2000).

    Article  Google Scholar 

  28. B. Saboori, A. R. Torabi, F. Berto, and N. Razavi, “Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples,” Struct. Eng. Mech., 65, No. 6, 699–706 (2018).

    Google Scholar 

  29. F. Berto, D. A. Cendon, P. Lazzarin, and M. Elices, “Fracture behaviour of notched round bars made of PMMA subjected to torsion at -60°C,” Eng. Fract. Mech., 102, 271–287 (2013).

    Article  Google Scholar 

  30. F. J. Gómez, G. V. Guinea, and M. Elices, “Failure criteria for linear elastic materials with U-notches,” Int. J. Fracture, 141, 99–113 (2006).

    Article  Google Scholar 

  31. D. A. Cendón, A. R. Torabi, and M. Elices, “Fracture assessment of graphite V-notched and U-notched specimens by using the cohesive crack model,” Fatigue Fract. Eng. Mater. Struct., 38, 563–573 (2015).

    Article  Google Scholar 

  32. D. Leguillon, “Strength or toughness? A criterion for crack onset at a notch,” Eur. J. Mech. A-Solid., 21, 61–72 (2002).

    Article  Google Scholar 

  33. Z. Yosibash, E. Priel, and D. Leguillon, “A failure criterion for brittle elastic materials under mixed-mode loading,” Int. J. Fracture, 141, 291–312 (2006).

    Article  CAS  Google Scholar 

  34. A. Sapora, P. Cornetti, A. Carpinteri, and D. Firrao, “An improved Finite Fracture Mechanics approach to blunt V-notch brittle fracture mechanics: Experimental verification on ceramic, metallic, and plastic materials,” Theor. Appl. Fract. Mech., 78, 20–24 (2015).

    Article  CAS  Google Scholar 

  35. P. Weiβgraeber and W. Becker, “Finite Fracture Mechanics model for mixed mode fracture in adhesive joints,” Int. J. Solids Struct., 50, 2383–2394 (2013).

    Article  Google Scholar 

  36. A. Sapora, P. Cornetti, and A. Carpinteri, “A Finite Fracture Mechanics approach to V-notched elements subjected to mixed-mode loading,” Eng. Fract. Mech., 97, 216–226 (2013).

    Article  Google Scholar 

  37. F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013).

    Article  CAS  Google Scholar 

  38. A. R. Torabi and M. R. Ayatollahi, “Compressive brittle fracture in V-notches with end holes,” Eur. J. Mech. A-Solid., 45, 32–40 (2014).

    Article  Google Scholar 

  39. M. R. Ayatollahi, A. R. Torabi, and M. Firoozabadi, “Theoretical and experimental investigation of brittle fracture in V-notched PMMA specimens under compressive loading,” Eng. Fract. Mech., 135, 187–205 (2015).

    Article  Google Scholar 

  40. A. R. Torabi, M. Firoozabadi, M. R. Ayatollahi, “Brittle fracture analysis of blunt V-notches under compression,” Int. J. Solids Struct., 67–68, 219–230 (2015).

    Article  Google Scholar 

  41. A. R. Torabi, B. Bahrami, and M. R. Ayatollahi, “Mixed mode I/II brittle fracture in V-notched Brazilian disk specimens under negative mode I conditions,” Phys. Mesomech., 19, 332–348 (2016).

    Article  Google Scholar 

  42. A. R. Torabi, H. R. Majidi, and M. R. Ayatollahi, “Brittle failure of key-hole notches under mixed mode I/II loading with negative mode I contributions,” Eng. Fract. Mech., 168, 51–72 (2016).

    Article  Google Scholar 

  43. M. R. Ayatollahi, A. R. Torabi, and A. S. Rahimi, “Brittle fracture assessment of engineering components in the presence of notches: a review,” Fatigue Fract. Eng. Mater. Struct., 39, 267–291 (2016).

    Article  Google Scholar 

  44. A. R. Torabi and M. Taherkhani, “Extensive data of notch shape factors for V-notched Brazilian disc specimen under mixed mode loading,” Mater. Sci. Eng. A, 528, 8599–8609 (2011).

    Article  CAS  Google Scholar 

  45. G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).

    Article  Google Scholar 

  46. C. P. Spyropoulos, “Energy release rate and path independent integral study for piezoelectric material with crack,” Int. J. Solids Struct., 41, 907–921 (2004).

    Article  Google Scholar 

  47. J. Z. Zuo and G. C. Sih, “Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 17–33 (2000).

    Article  CAS  Google Scholar 

  48. G. C. Sih and J. Z. Zuo, “Multiscale behavior of crack initiation and growth in piezoelectric ceramics,” Theor. Appl. Fract. Mech., 34, 123–141 (2000).

    Article  CAS  Google Scholar 

  49. G. C. Sih and Z. F. Song, “Damage analysis of tetragonal perovskite structure ceramics implicated by asymptotic field solutions and boundary conditions,” Theor. Appl. Fract. Mech., 38, 15–36 (2002).

    Article  CAS  Google Scholar 

  50. Z. F. Song and G. C. Sih, “Electromechanical influence of crack velocity at bifurcation for poled ferroelectric materials,” Theor. Appl. Fract. Mech., 38, 121–139 (2002).

    Article  CAS  Google Scholar 

  51. Z. Suo, C.-M. Kuo, D. M. Barnett, and J. R. Willis, “Fracture mechanics for piezoelectric ceramics,” J. Mech. Phys. Solids, 40, 739–765 (1992).

    Article  Google Scholar 

  52. H. Gao, T.-Y. Zhang, and P. Tong, “Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic,” J. Mech. Phys. Solids, 45, 491–510 (1997).

    Article  CAS  Google Scholar 

  53. Z. Yosibash, A. Bussiba, and I. Gilad, “Failure criteria for brittle elastic materials, Int. J. Fracture, 125, 307–333 (2004).

  54. N. Razavi, M. R. M. Aliha, and F. Berto, “Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens,” Theor. Appl. Fract. Mech., 97, 419–425 (2018).

    Article  Google Scholar 

  55. N. Razavi, M. R. Ayatollahi, and F. Berto, “A synthesis of geometry effect on brittle fracture,” Eng. Fract. Mech., 187, 94–102 (2018).

    Article  Google Scholar 

  56. N. Razavi and F. Berto, “Directed energy deposition versus wrought Ti–6Al–4V: A comparison of microstructure, fatigue behavior, and notch sensitivity,” Adv. Eng. Mater., 21, No. 8, 1900220 (2019).

  57. L. P. Pook, A. Campagnolo, and F. Berto, “Coupled fracture modes of discs and plates under anti-plane loading and a disc under in-plane shear loading,” Fatigue Fract. Eng. Mater. Struct., 39, 924–938 (2016).

    Article  Google Scholar 

  58. L. P. Pook, F. Berto, and A. Campagnolo, “State of the art of corner point singularities under in-plane and out-of-plane loading,” Eng. Fract. Mech., 174, 2–9 (2017).

    Article  Google Scholar 

  59. P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications,” Int. J. Fatigue, 32, 1559–1567 (2010).

    Article  CAS  Google Scholar 

  60. G. Meneghetti, A. Campagnolo, F. Berto, and B. Atzori, “Averaged strain energy density evaluated rapidly from the singular peak stresses by FEM: cracked components under mixed-mode (I+II) loading,” Theor. Appl. Fract. Mech., 79, 113–124 (2015).

    Article  Google Scholar 

  61. A. Campagnolo, G. Meneghetti, and F. Berto, “Rapid finite element evaluation of the averaged strain energy density of mixed-mode (I + II) crack tip fields including the T-stress contribution,” Fatigue Fract. Eng. Mater. Struct., 39, 982–998 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Berto.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 103 – 121, September – October, 2019.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, A.R., Razavi, N., Berto, F. et al. On Suitability of the Averaged Strain Energy Density Criterion in Predicting Mixed Mode I/II Brittle Fracture of Blunt V-Notches with Negative Mode I Contributions. Strength Mater 51, 770–785 (2019). https://doi.org/10.1007/s11223-019-00126-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-019-00126-0

Keywords

Navigation