Skip to main content
Log in

Probabilistic Distribution of Crack Length in the Case of Multiple Fracture

  • Published:
Strength of Materials Aims and scope

A model describing crack length distribution is proposed on the basis of experimental laws governing the formation and growth of fatigue cracks in a flat specimen with multiple stress raisers. The density of this distribution corresponds to that of Pareto and can be used to describe the accumulation of scattered defects in a wide range of cracking scale. The critical values of Pareto distribution exponent, which correspond to the limit states of the multiple fracture of solid bodies, have been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. L. R. Botvina and G. I. Barenblatt, “Self-similarity of damage cumulation,” Strength Mater., 17, No. 12, 1653–1663 (1985).

    Article  Google Scholar 

  2. L. R. Botvina, Fracture Kinetics of Structural Materials [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  3. L. R. Botvina, Fracture: Kinetics, Mechanisms, General Laws [in Russian], Nauka, Moscow (2008).

    Google Scholar 

  4. A. Carpinteri, G. Lacidogna, and S. Puzzi, “Prediction of cracking evolution in full scale structures by the b-value analysis and Yule statistics,” Fiz. Mesomekh., 11, No. 3, 75–87 (2008).

    Google Scholar 

  5. V. V. Bolotin, Life of Machines and Structures [in Russian], Mashinostroenie, Moscow (1990).

    Google Scholar 

  6. S. R. Ignatovich and N. I. Bouraou, “The reliability of detecting cracks during nondestructive testing of aircraft components,” Russ. J. Nondestruct. Test., 49, No. 5, 294–300 (2013).

    Article  Google Scholar 

  7. S. R. Ignatovich, “Predicting the merging of disperse defects,” Strength Mater., 24, No. 2, 202–211 (1992).

    Google Scholar 

  8. S. R. Ignatovich, A. G. Kucher, A. S. Yakushenko, and A. V. Bashta, “Modeling of coalescence of dispersed surface cracks. Part 1. Probabilistic model for crack coalescence,” Strength Mater., 36, No. 2, 125–133 (2004).

    Article  Google Scholar 

  9. S. R. Ignatovich, “Probabilistic model of multiple-site fatigue damage of riveting in airframes,” Strength Mater., 46, No. 3, 336–344 (2014).

    Article  Google Scholar 

  10. S. R. Ignatovich and E. V. Karan, “Fatigue crack growth kinetics in D16AT aluminum alloy specimens with multiple stress concentrators,” Strength Mater., 47, No. 4, 586–594 (2015).

    Article  Google Scholar 

  11. V. T. Troshchenko and L. A. Khamaza, Mechanics of Nonlocalized Fatigue Damage of Metals and Alloys [in Russian], Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2016).

  12. S. Barter, L. Molent, N. Goldsmith, and R. Jones, “An experimental evaluation of fatigue crack growth,” Eng. Fail. Anal., 12, 99–128 (2005).

    Article  Google Scholar 

  13. L. Molent, R. Jones, S. Barter, and S. Pitt, “Recent developments in fatigue crack growth assessment,” Int. J. Fatigue, 28, 1759–1768 (2006).

    Article  Google Scholar 

  14. D. A. Virkler, B. M. Hillberry, and P. K. Goel, “The statistical nature of fatigue crack propagation,” J. Eng. Mater. Technol., 101, No. 2, 148–153 (1979).

    Article  Google Scholar 

  15. Y. C. Tong, Literature Review on Aircraft Structural Risk and Reliability Analysis, Technical Report DSTO-TR-1110, Aeronautical and Maritime Research Laboratory (2001).

  16. S. R. Ignatovich, E. V. Karan, and V. S. Krasnopol’skii, “Crack length distribution in a riveted joint of on aircraft structure in the case of multiple site damage,” Fiz.-Khim. Mekh. Mater., 49, No. 2, 109–116 (2013).

    Google Scholar 

  17. S. R. Ignatovich, “Distribution of defect dimensions in loading solids,” Strength Mater., 22, No. 9, 1295–1301 (1990).

    Article  Google Scholar 

  18. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  19. M. E. J. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemp. Phys., 46, No. 5, 323–351 (2005).

    Article  Google Scholar 

  20. V. A. Vladimirov, Yu. L. Vorob’ev, G. G. Malinetskii, et al., Risk Control. Risk, Sustainable Development, and Synergetics [in Russian], Nauka, Moscow (2000).

  21. A. Carpinteri, G. Lacidogna, G. Niccolini, and S. Puzzi, “Critical defect size distributions in concrete structures detected by the acoustic emission technique,” Meccanica, 43, 349–363 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Ignatovich.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 31 – 42, November – December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatovich, S.R., Krasnopol’skii, V.S. Probabilistic Distribution of Crack Length in the Case of Multiple Fracture. Strength Mater 49, 760–768 (2017). https://doi.org/10.1007/s11223-018-9921-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-018-9921-9

Keywords

Navigation