Skip to main content
Log in

A Variant of the Strain-Hardening Theory Allowing for the Stress and Temperature Dependence of Parameters in Constitutive Equations

  • Published:
Strength of Materials Aims and scope

Abstract

A procedure is put forward for concrete definition of constitutive relationships of the strain-hardening theory allowing for the level of damage in a material. The parameters of the equation of creep and the damage evolution relationship are assumed to be functions of stress and temperature. Efficiency of this approach is illustrated by describing creep curves for 20Kh13 and EP44 steels over a fairly wide range of stress variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  2. Yu. N. Rabotnov and S. T. Mileiko, Short-Term Creep [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  3. G. S. Pisarenko, V. N. Rudenko, G. N. Tret’yachenko, and V. T. Troshchenko, Strength of Materials at High Temperatures [in Russian], Naukova Dumka, Kiev (1966).

    Google Scholar 

  4. G. S. Pisarenko (Ed.), Strength of Materials and Structural Elements under Extreme Conditions [in Russian], in 2 volumes, Naukova Dumka, Kiev (1980).

    Google Scholar 

  5. I. I. Gol’denblat, V. L. Bazhanov, and V. A. Kopnov, Long-Term Strength in Mechanical Engineering [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  6. G. F. Lepin, Creep of Materials and High-Temperature Strength Criteria [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  7. V. P. Golub and A. D. Pogrebnyak, High-Temperature Fracture of Materials under Low-Cycle Loading [in Russian], Naukova Dumka, Kiev (1994).

    Google Scholar 

  8. A. Nadai, Theory of Flow and Fracture of Solids [Russian translation], Vol. 2, Mir, Moscow (1969).

    Google Scholar 

  9. K. J. Miller, Creep and Fracture, North Holland Publishing Company (1982).

  10. S. A. Shesterikova (Ed.), Mechanisms of Creep and Long-Term Strength. Handbook [in Russian], Mashinostroenie, Moscow (1983).

    Google Scholar 

  11. L. Ya. Liberman and M. I. Peisikhis, Properties of Steels and Alloys Used in Boiler and Turbine Industry [in Russian], in 3 parts, Issue 16, TsKTI, Leningrad (1966).

    Google Scholar 

  12. V. T Troshchenko (Ed.), A. Ya. Krasovskii, V. V. Pokrovskii, et al., Resistance of Materials to Deformation and Fracture [in Russian], in 2 parts, Naukova Dumka, Kiev (1993).

    Google Scholar 

  13. Yu. N. Rabotnov, Theory of Creep. Mechanics in the USSR for 50 Years. In 3 parts. Part 3: Solids Mechanics [in Russian], Nauka, Moscow (1972), pp. 119–154.

    Google Scholar 

  14. S. A. Shesterikov and A. M. Lokoshchenko, “Creep and long-term strength of metals,” in: Advances in Science and Technology. Series: Solids Mechanics [in Russian], Vol. 13, VINITI, Moscow (1980), pp. 3–104.

    Google Scholar 

  15. J. Hult, “Creep in continua and structures,” in: Topics in Applied Continuum Mechanics, Springer, New York (1974), pp. 137–155.

    Google Scholar 

  16. V. P. Golub, “An experimental study of high-temperature creep, fatigue, and damage processes. Part I. Investigation techniques,” Prikl. Mekh., 37, No.4, 3–38 (2001).

    Google Scholar 

  17. V. P. Golub, “An experimental study of high-temperature creep, fatigue, and damage processes. Part II. Main mechanisms,” Prikl. Mekh., 37, No.5, 3–43 (2001).

    Google Scholar 

  18. L. M. Kachanov, “On the creep fracture time,” Izv. AN SSSR. Otd. Tekhn. Nauk, No. 8, 26–31 (1958).

  19. V. V. Novozhilov, “On plastic loosening,” Prikl. Mekh. Matem., 29, Issue 4, 681–689 (1965).

    Google Scholar 

  20. J. Lemaitre and A. Plumtree, “Application of damage concepts to predict creep-fatigue failures,” Teoret. Osn. Inzh. Rasch., 101, No.3, 124–134 (1971).

    Google Scholar 

  21. V. I. Kovpak, Prediction of High-Temperature Strength of Metallic Materials [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  22. V. P. D’yakonov, MATLAB 6/6.1/6.5+Simulink 4/5 in Mathematics and Modeling. Complete User Manual [in Russian], Solon, Moscow (2003.

    Google Scholar 

  23. V. N. Kiselevskii and B. D. Kosov, “Constitutive equations for creep in a hardenable material,” Probl. Prochn., No. 4, 8–18 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Problemy Prochnosti, No. 2, pp. 19 – 27, March – April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucher, N.K. A Variant of the Strain-Hardening Theory Allowing for the Stress and Temperature Dependence of Parameters in Constitutive Equations. Strength Mater 37, 124–130 (2005). https://doi.org/10.1007/s11223-005-0025-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-005-0025-y

Keywords

Navigation