Skip to main content
Log in

Optimal regular graph designs

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A typical problem in optimal design theory is finding an experimental design that is optimal with respect to some criteria in a class of designs. The most popular criteria include the A- and D-criteria. Regular graph designs occur in many optimality results, and if the number of blocks is large enough, an A-optimal (or D-optimal) design is among them (if any exist). To explore the landscape of designs with a large number of blocks, we introduce extensions of regular graph designs. These are constructed by adding the blocks of a balanced incomplete block design repeatedly to the original design. We present the results of an exact computer search for the best regular graph designs and the best extended regular graph designs with up to 20 treatments v, block size \(k \le 10\) and replication r \(\le 10\) and \(r(k-1)-(v-1)\lfloor r(k-1)/(v-1)\rfloor \le 9\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amerine, M.A., Roessler, E.B.: Wines: Their Sensory Evaluation. W. H, Freeman, San Francisco (1979)

  • Bailey, R.A., Cameron, P.J.: Combinatorics of optimal designs. In: Surveys in Combinatorics 2009, London Mathematical Society Lecture Notes, vol 365, pp 19–73. Cambridge University Press, Cambridge (2009)

  • Bailey, R.A.: Designs for two-colour microarray experiments. Appl. Stat. 56(4), 365–394 (2007)

    MathSciNet  Google Scholar 

  • Beckenbach, E.F., Bellman, R.: Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1965)

    Google Scholar 

  • Best, D.J., Rayner, J.C., Allingham, D.: A statistical test for ranking data from partially balanced incomplete block designs. J. Sensory Stud. 26, 81–84 (2011)

    Article  Google Scholar 

  • Bose, R.C., Nair, K.R.: Partially balanced incomplete block designs. Sankhya 4, 337–372 (1939)

    Google Scholar 

  • Bose, R.C., Shimamoto, T.: Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Am. Stat. Soc. 47, 151–184 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, C.S.: Optimality of certain asymmetrical experimental designs. Annal Stat. 6, 1239–1261 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, C.S.: Maximizing the total number of spanning trees in a graph: Two related problems in graph theory and optimum design theory. J. Comb. Theory 31, 240–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, C.S.: On the optimality of (M.S)-optimal designs in large systems. Sankhya 54, 117–125 (1992)

    MathSciNet  Google Scholar 

  • Cheng, C.S., Bailey, R.A.: Optimality of some two-associate-class partially balanced incomplete-block designs. Annal Stat. 19(3), 1667–1671 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Clatworthy, W.H.: Tables of two-associate-class partially balanced designs, NBS Applied Mathematics Series, vol 63. The United States Department of Commerce Publications, National Bureau of Standards (U.S.) (1973)

  • Cochran, W.G., Cox, G.: Experimental Designs. John Wiley and Sons, New York, NY (1957)

    MATH  Google Scholar 

  • Constantine, G.M.: On the E-optimality of PBIB designs with a small number of blocks. Annal Stat. 10, 1027–1031 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantine, G.M.: On the optimality of block designs. Ann. Inst. Stat. Math. 38, 161–174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Gacula, M.C., Singh, J., Bi, J., Altan, S.: Statistical Methods in Food and Consumer Research. Academic Press, New York, NY (2009)

    Google Scholar 

  • John, J.A., Mitchell, T.J.: Optimal Incomplete Block Designs. ORNL/CSD-8 Available from the National Technical Information Service, The United States Department of Commerce, 5285 Port Royal Road, Springfield, VA (1976)

  • John, J.A., Wolock, F.W., David, H.A.: Cyclic designs, NBS Applied Mathematics Series, vol 62. The United States Department of Commerce Publications, National Bureau of Standards (U.S.) (1972)

  • John, J.A.: Reduced group divisible paired comparison designs. Ann. Math. Stat. 38, 1887–1893 (1967)

    Article  MathSciNet  Google Scholar 

  • John, J.A., Mitchell, T.J.: Optimal incomplete block designs. J. R. Stat. Soc. 39B, 39–43 (1977)

  • John, J.A., Williams, E.R.: Conjectures for optimal block designs. J. R. Stat. Soc. 44B, 221–225 (1982)

    MathSciNet  MATH  Google Scholar 

  • Jones, B., Eccleston, J.A.: Exchange and interchange procedures to search for optimal designs. J. R. Stat. Soc. 42, 238–243 (1980)

    MathSciNet  MATH  Google Scholar 

  • Kerr, M.K., Churchill, G.A.: Experimental design for gene expression microarrays. Biostatistics 2, 183–201 (2001)

    Article  MATH  Google Scholar 

  • Kiefer, J.: Optimality and Construction of Generalized Youden Designs. A Survey of Statistical Designs and Linear Models, pp. 333–354. North-Holland, Amsterdam (1975)

  • Kirchhoff, G.: Über die Auflösung der Gleichung, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  • Lockshin, L., Mueller, S., Louviere, J., Francis, L., Osidacz, P.: Development of a new method to measure how consumers choose wine. Aust. N. Z. Wine Ind. J. 24, 81–84 (2011)

    Google Scholar 

  • Meringer, M.: Fast generation of regular graphs and construction of cages. J. Graph Theory 30, 137–146 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Morgan, J.P.: Optimal incomplete block designs. J. Am. Stat. Assoc. 102, 655–663 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Shah, K.R., Sinha, B.K.: Theory of Optimal Designs, Lecture Notes in Statistics, vol 54. Springer, Berlin (1989)

  • Soicher, L.H.: The DESIGN Package for GAP, Version 1.4. http://designtheory.org/software_design/ (2006)

  • Takeuchi, K.: On the optimality of certain type of PBIB designs. Rep. Stat. Appl. Res. Union Jpn. Sci. Eng. 8, 140–145 (1961)

    MathSciNet  MATH  Google Scholar 

  • Wit, E., Nobile, A., Khanin, R.: Near-optimal designs for dual channel microarray studies. Appl. Stat. 54, 817–830 (2005)

    MathSciNet  MATH  Google Scholar 

  • Wolfram Research, I.: Mathematica (2012)

Download references

Acknowledgements

The author would like to thank Peter J. Cameron and R. A. Bailey for the many conversations on optimal designs and is extremely grateful to J.  P. Morgan for bringing the topic to her attention and the helpful discussions about RGDs and the arising computational difficulties. Joachim Kunert has been an invaluable source of information for preference designs. Parts of the computations were performed using the facilities at the London Research Institute, Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sera Aylin Cakiroglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 52 KB)

Supplementary material 2 (pdf 188 KB)

Appendices

Appendix 1: Catalogue of A- and D-best RGDs

There follows a table of the A- and D-best RGDs (except for the case \(v=14\), \(r=5\), \(k=2\), where only the D-best RGD is included). These RGDs also produce optimal BIBD-extended RGDs for large y. We list \(\delta =r(k-1)-\lambda (v-1)\) and the smallest \({\tilde{\lambda }}\) such that a 2-\((v,k,{\tilde{\lambda }})\)-design exists. There exists only one irreducible matrix for \(\delta =2\) or \(\delta =v-1\), and we therefore exclude these cases.

Most designs can be found in either Clatworthy (1973) or John et al. (1972). To follow the convention as in John and Mitchell (1977), we write in the reference column P.XY for a design in Clatworthy (1973) with reference number XY and C.XY for a design in John et al. (1972) with reference number XY. If the design is not in either catalogues but can be found in John and Mitchell (1977) we give the reference number as JM.XY, and if it is cyclic, we give the initial blocks. If the design is the complement of a design in one of the catalogue, we add an (C) to the reference number. All other designs can be found in the appendix. However, some of these designs are possible to construct with known methods, such as the ones in John (1967). A full catalogue of all designs as XML files in external representation format is included in the electronic appendix. For more information on external representation see Soicher (2006).

v

k

r

\({\tilde{\lambda }}\)

\(\delta \)

Reference

6

2

3 + 5y

1

3

P.SR6,C.A2

6

2

4 + 5y

1

4

P.R18,C.A3

6

2

8 + 5y

1

3

P.R24

6

2

9 + 5y

1

4

P.R27

6

3

4 + 5y

2

3

(1,2,4)(1,3,5)

6

3

7 + 5y

2

4

P.R46

6

3

9 + 5y

2

3

P.R52

6

4

6 + 10y

6

3

P.SR35

6

4

8 + 10y

6

4

P.R96

7

2

4 + 6y

1

4

#1

7

2

10 + 6y

1

4

JM.1

7

5

10 + 15y

10

4

#2

8

2

3 + 7y

1

3

C.A7

8

2

4 + 7y

1

4

P.SR9,C.A8

8

2

5 + 7y

1

5

JM.3

8

2

6 + 7y

1

6

P.R29,C.A10

8

2

10 + 7y

1

3

(1,2)(1,2)(1,3)(1,4)(1,5)(1,5)

8

3

3 + 21y

6

6

P.R54,C.B3

8

3

6 + 21y

6

5

JM.4

8

3

9 + 21y

6

4

P.R58

8

4

4 + 7y

3

5

C.B6

8

4

6 + 7y

3

4

P.SR38

8

4

8 + 7y

3

3

(1,2,3,5)(1,2,3,6)

8

4

9 + 7y

3

6

P.R101

8

5

5 + 35y

20

6

P.R314,C.B3(C)

8

5

10 + 35y

20

5

JM.4(C)

8

6

9 + 21y

15

3

C.A7(C)

9

2

4 + 8y

1

4

C.A11

9

2

6 + 8y

1

6

P.R34,C.A13

9

3

3 + 4y

1

6

P.SR23

9

3

6 + 4y

1

4

JM.8

9

3

7 + 4y

1

6

P.R62

9

3

10 + 4y

1

4

JM.10

9

4

4 + 8y

3

4

C.B12

9

5

5 + 10y

5

4

C.B12(C)

9

6

6 + 8y

5

6

P.SR65

10

2

3 + 9y

1

3

P.T2

10

2

4 + 9y

1

4

C.A16

10

2

5 + 9y

1

5

P.SR11,C.A17

10

2

6 + 9y

1

6

JM.12

10

2

7 + 9y

1

7

JM.13

10

2

8 + 9y

1

8

P.R36,C.A20

10

3

3 + 9y

2

6

JM.14

10

3

6 + 9y

2

3

P.T12

10

4

4 + 6y

2

3

P.T33

10

4

8 + 6y

2

6

JM.15

10

4

10 + 6y

2

3

P.T37

10

5

6 + 9y

4

6

JM.16

10

5

8 + 9y

4

5

JM.17

10

5

10 + 9y

4

6

JM.19

10

6

6 + 9y

5

3

P.T60

10

7

7 + 21y

14

6

JM.14(C)

11

2

4 + 10y

1

4

C.22

11

2

6 + 10y

1

6

#3

11

2

8 + 10y

1

8

JM.20

11

3

3 + 15y

3

6

#4

11

3

9 + 15y

3

8

JM.21

11

4

8 + 20y

6

4

C.B25(C)

11

8

8 + 40y

28

6

#4(C)

12

2

3 + 11y

1

3

JM.22

12

2

4 + 11y

1

4

C.A27

12

2

5 + 11y

1

5

#5

12

2

6 + 11y

1

6

P.SR13,C.A29

12

2

7 + 11y

1

7

JM.24

12

2

8 + 11y

1

8

P.R38,C.A31

12

2

9 + 11y

1

9

P.R39,C.A32

12

3

3 + 11y

2

6

#6

12

3

4 + 11y

2

8

P.SR26

12

3

7 + 11y

2

3

JM.25

12

3

9 + 11y

2

7

JM.27

12

3

10 + 11y

2

9

P.R78,C.B34

12

4

3 + 11y

3

9

P.SR41

12

4

5 + 11y

3

4

C.B37

12

4

6 + 11y

3

7

JM.28

12

5

5 + 55y

20

9

P.R145,C.B43

12

6

10 + 11y

5

6

P.SR71

12

7

7 + 77y

42

9

P.R176,

     

C.B43(C)

12

9

9 + 33y

24

6

#6(C)

13

2

4 + 12y

1

4

C.A35

13

2

6 + 12y

1

6

#7

13

2

8 + 12y

1

8

#8

13

3

9 + 6y

1

6

#9

7 13

5

5 + 15y

5

8

C.B58

14

2

3 + 13y

1

3

#10

14

2

4 + 13y

1

4

#11

14

2

5 + 13y

1

5

#12

14

3

9 + 39y

6

5

#13

14

3

15 + 39y

6

4

#14

14

6

6 + 39y

15

4

C.B72

15

2

4 + 14y

1

4

#15

15

3

9 + 28y

1

4

C.B77

16

2

3 + 15y

1

3

#16

16

3

9 + 13y

2

3

#17

16

4

6 + 5y

1

3

P.R118

18

2

3 + 17y

1

3

#18

18

3

10 + 17y

2

3

#19

18

5

5 + 85y

20

3

#20

20

2

3 + 19y

1

3

#21

Appendix 2: Optimal regular graph designs

There follows a list of all designs not found in the used reference catalogues. Blocks are represented as k-tuples of treatments in the rows.

\(\underline{\#1\,v=7,\,k=2,\,r=4+6y}\)

figure b

\(\underline{\#2\,v=7,\,k=5,\,r=10+15y}\)

figure c

\(\underline{\#3\,v=11,\,k=2,\,r=6+10y}\)

figure d

\(\underline{\#4\,v=11,\,k=3,\,r=3+15y}\)

figure e

\(\underline{\#5\,v=12,\,k=2,\,r=5+11y}\)

figure f

\(\underline{\#6\,v=12,\,k=3,\,r=3+11y}\)

figure g

\(\underline{\#7\,v=13,\,k=2,\,r=6+12y}\)

figure h

\(\underline{\#8\,v=13,\,k=2,\,r=8+12y}\)

figure i

\(\underline{\#9\,v=13,\,k=3,\,r=9+6y}\)

figure j

\(\underline{\#10\,v=14,\,k=2,\,r=3+13y}\)

figure k

\(\underline{\#11\,v=14,\,k=2,\,r=4+13y}\)

figure l

\(\underline{\#12\,v=14,\,k=2,\,r=5+13y}\)

figure m

\(\underline{\#13\,v=14,\,k=3,\,r=9+39y}\)

figure n

\(\underline{\#14\,v=14,\,k=3,\,r=15+39y}\)

figure o

\(\underline{\#15\,v=15,\,k=2,\,r=4+14y}\)

figure p

\(\underline{\#16\,v=16,\,k=2,\,r=3+15y}\)

figure q

\(\underline{\#17\,v=16,\,k=3,\,r=9+13y}\)

figure r

\(\underline{\#18\,v=18,\,k=2,\,r=3+17y}\)

figure s

\(\underline{\#19\,v=18,\,k=3,\,r=10+17y}\)

figure t

\(\underline{\#20,v=18,\,k=5,\,r=5+85y}\)

figure u

\(\underline{\#21\,v=20,\,k=2,\,r=3+19y}\)

figure v

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cakiroglu, S.A. Optimal regular graph designs. Stat Comput 28, 103–112 (2018). https://doi.org/10.1007/s11222-016-9720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-016-9720-8

Keywords

Navigation