Skip to main content
Log in

Spherical radial approximation for nested mixed effects models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We consider a likelihood approximation in generalized linear mixed-effects models (GLMM) with multilevel nested random effects. Likelihood evaluation in such models is difficult, hindered by the need for high dimensional integration, where the dimension is proportional to the number of units per level and the number of random effects per unit. Various integration approaches have been proposed, including the penalized quasi-likelihood method, Laplace approximation, quadrature approximation, simulation, and MCMC algorithms. We propose a new quadrature approximation method, which is based on the spherical radial integration approach of Monahan and Genz (J Am Stat Assoc 92:664–674 1997), and at the same time takes advantage of the hierarchical structure of the integration. Our new hierarchical spherical radial method has a time complexity that is linear in the number of units per level and the number of random effects per unit, in contrast to the exponential complexity of the adaptive Gaussian quadrature method of Pinheiro and Chao (J Comput Graph Stat 15:58–81 2006) for the same problem. Using a spline approximation, the generalized additive mixed models (GAMM) are GLMMs with two levels of nested random effects. We apply our method to estimation of GAMMs. We compare it with competing methods through simulations and apply our method to analyze virologic and immunologic responses in an AIDS clinical trial. An R package is written and available at http://users.wpi.edu/~jgagnon/software.html.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An, X., Bentler, P.: Efficient direct sampling mcem algorithm for latent variable models with binary responses comput. Stat. Data Anal. 56(2), 231–244 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B.: lme4: linear mixed-effects models using S4 classes. R package version 0.999375-39 http://CRAN.R-project.org/package=lme4 (2011)

  • Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H., White, J.S.: Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24(3), 127–135 (2009)

    Article  Google Scholar 

  • Breslow, N.E., Clayton, D.G.: Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88(421), 9–25 (1993)

    MATH  Google Scholar 

  • Brinch, C.N.: Efficient simulated maximum likelihood estimation through explicitly parameter dependent importance sampling. Comput. Stat. 27(1), 13–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Chib, S., Jeliazkov, I.: Inference in semiparametric dynamic models for binary longitudinal data. J. Am. Stat. Assoc. 101(474), 685–700 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Clarkson, D., Zhan, Y.: Using spherical radial quadrature to fit generalized linear mixed effects models. J. Comput. Graph. Stat. 11(3), 639–659 (2002)

    Article  MathSciNet  Google Scholar 

  • Crainiceanu, C., Ruppert, D., Wand, M.: Bayesian analysis for penalized spline regression using Winbugs. J. Stat. Softw. 14(14), 1–24 (2005)

    Article  Google Scholar 

  • Gu, C., Ma, P.: Generalized nonparametric mixed-effect models: computation and smoothing parameter selection. J. Comput. Graph. Stat. 14(2), 485–504 (2005)

    Article  MathSciNet  Google Scholar 

  • Lederman, M.M., Connick, E., Landay, A., et al.: Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J. Infect. Dis. 178(1), 70–79 (1998)

    Article  Google Scholar 

  • Lele, S.R., Nadeem, K., Schmuland, B.: Estimability and likelihood inference for generalized linear mixed models using data cloning. J. Am. Stat. Assoc. 105(492), 1617–1625 (2010)

    Article  MathSciNet  Google Scholar 

  • Liang, H.: Generalized partially linear mixed-effects models incorporating mismeasured covariates. Ann. Inst. Stat. Math. 61(1), 27–46 (2009)

    Article  MATH  Google Scholar 

  • Lin, X., Zhang, D.: Inference in generalized additive mixed models by using smoothing splines. J. Royal Stat. Soc. B 61(2), 381–400 (1999)

    Article  MATH  Google Scholar 

  • Mollet, L., Li, T.S., Samri, A., et al.: Dynamics of HIV-specific CD8+ T lymphocytes with changes in viral load. J. Immunol. 165(3), 1692–1704 (2000)

    Article  Google Scholar 

  • Monahan, J., Genz, A.: Spherical-radial integration rules for a Bayesian computation. J. Am. Stat. Assoc. 92(438), 664–674 (1997)

    Article  MATH  Google Scholar 

  • Pinheiro, J.C., Chao, E.C.: Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J. Comput. Graph. Stat. 15(1), 58–81 (2006)

    Article  MathSciNet  Google Scholar 

  • Raudenbush, S., Bryk, A., Cheong, Y., Congdon, R.: HLM 5: Hierarchical Linear and Nonlinear Modeling. (Statistical software manual). Scientific Software International, Skokie, IL (2000)

  • Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric Regression. Cambridge University Press, Cambridge (2003)

  • Skaug, H.J., Fournier, D.A.: Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Comput. Stat. Data An. 51(2), 699–709 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Skaug, H.J.: Automatic differentiation to facilitate maximum likelihood estimation in nonlinear random effects models. J. Comput. Graph. Stat. 11(2), 458–470 (2002)

    Article  MathSciNet  Google Scholar 

  • Schall, R.: Estimation in generalized linear models with random effects. Biometrika 78(4), 719–727 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  • Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002)

  • Wahba, G.: Spline models for observational data. In: Proceedings of the Society for Industrial and Applied Mathematics, CBMS-NSF Regional conference series in applied mathematics. SIAM, Philadelphia (1990)

  • Wand, M.P.: Smoothing and mixed models. Comput. Stat. 18(2), 223–249 (2003)

  • Wolfinger, R., Connell, O.: Generalized linear mixed models: a pseudo-likelihood approach. J. Statist. Comput. Simul. 48(3–4), 233–243 (1993)

    Article  MATH  Google Scholar 

  • Wood, S.N.: Generalized Additive Models: An Introduction with R. CRC Press, Boca Raton (2006)

  • Wu, H.L., Zhang, J.T.: The study of long-term HIV dynamics using semiparametric non-linear mixed effects models. Stat. Med. 21(23), 3655–3675 (2002)

    Article  Google Scholar 

  • Zhao, Y., Staudenmayer, J., Coull, B., Wand, M.: General design Bayesian generalized linear mixed models. Stat. Sci. 21(1), 35–51 (2006)

  • Zipunnikov, V., Booth, J.: Monte Carlo EM for Generalized Linear Mixed Models using Randomized Spherical Radial Integration. http://faculty.bscb.cornell.edu/~booth/papers/mcem-sr.pdf unpublished (2006)

Download references

Acknowledgments

This research is partially supported by NSA H98230-09-1-0044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Gagnon.

Appendix

Appendix

Lemma 1

If \(h(\mathbf {u})=h_0(\mathbf {x}_3)h_1(\mathbf {x}_1,\mathbf {x}_3)h_2(\mathbf {x}_2,\mathbf {x}_3)\) is spherically symmetric in \(\mathbf {u}=(\mathbf {x}_1,\mathbf {x}_2,\mathbf {x}_3)\), then so is: \(g(\mathbf {x}_3) = h_0(\mathbf {x}_3) \int h_1(\mathbf {x}_1,\mathbf {x}_3)h_2(\mathbf {x}_2,\mathbf {x}_3) d\mathbf {x}_1 d\mathbf {x}_2\) in \(\mathbf {x}_3\).

Proof

Let R be a rotation matrix (orthogonal and determinant=1) we then have:

$$\begin{aligned} g(R\mathbf {x}_3)&= \int h(\mathbf {x}_1,\mathbf {x}_2,R\mathbf {x}_3) d\mathbf {x}_1 d\mathbf {x}_2 \nonumber \\&= \int h(\left( \begin{array}{ccc} \mathbf {I} &{} \mathbf {0} &{}\mathbf {0} \\ \mathbf {0} &{} \mathbf {I} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {0} &{} \mathbf {R} \end{array} \right) \left( \begin{array}{c} \mathbf {x}_1 \\ \mathbf {x}_2 \\ \mathbf {x}_3 \end{array} \right) ) d\mathbf {x}_1 d\mathbf {x}_2 . \end{aligned}$$
(30)

Since \(\left( \begin{array}{ccc} \mathbf {I} &{} \mathbf {0} &{}\mathbf {0} \\ \mathbf {0} &{} \mathbf {I} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {0} &{} \mathbf {R} \end{array} \right) \) is orthogonal and has determinant one, it is a rotation matrix, so:

$$\begin{aligned} \int h(\left( \begin{array}{ccc} \mathbf {I} &{} \mathbf {0} &{}\mathbf {0} \\ \mathbf {0} &{} \mathbf {I} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {0} &{} \mathbf {R} \end{array} \right) \left( \begin{array}{c} \mathbf {x}_1 \\ \mathbf {x}_2 \\ \mathbf {x}_3 \end{array} \right) ) d\mathbf {x}_1 d\mathbf {x}_2&= \int h(\mathbf {x}_1,\mathbf {x}_2,\mathbf {x}_3) d\mathbf {x}_1 d\mathbf {x}_2 \nonumber \\&= g(\mathbf {x}_3) \end{aligned}$$
(31)

which proves that \(g(\mathbf {x}_3)\) is spherically symmetric. \(\square \)

Lemma 2

Let \(h(\mathbf {u})\) be the same as in lemma 1. If \(h(\mathbf {u})\) is spherically symmetric with respect to \(\mathbf {u}\), then so is \(h_1(\mathbf {x}_1,\mathbf {x}_3)\) in \(\mathbf {x}_1\) and \(h_2(\mathbf {x}_2,\mathbf {x}_3)\) in \(\mathbf {x}_2\).

Proof

We show it for \(h_1(\mathbf {x}_1,\mathbf {x}_3)\) in \(\mathbf {x}_1\) only. Let R be a rotation matrix of the same size of the length of \(\mathbf {x}_1\). Then, \(G = \left( \begin{array}{ccc} \mathbf {R} &{} \mathbf {0} &{} \mathbf {0} \\ \mathbf {0} &{} {\mathbf {I}_{x_2}} &{} \mathbf {0} \\ \mathbf {0} &{} \mathbf {0} &{} {\mathbf {I}_{x_3}} \end{array} \right) \) is a rotation matrix as well with \({\mathbf {I}_{x_2}}\) being an identity matrix whose size is the length of \(\mathbf {x}_2\) and \({\mathbf {I}_{x_3}}\) is an identity matrix whose size is the length of \(\mathbf {x}_3\). Because \(h(\mathbf {u})\) is spherically symmetric, we have:

$$\begin{aligned} h(\mathbf {u}) = h(G\mathbf {u}) = h_0(\mathbf {x}_3)h_1(R\mathbf {x}_1,\mathbf {x}_3)h_2(\mathbf {x}_2,\mathbf {x}_3) \end{aligned}$$
(32)

which implies:

$$\begin{aligned} h_1(\mathbf {x}_1,\mathbf {x}_3) = h_1(R\mathbf {x}_1,\mathbf {x}_3) \end{aligned}$$
(33)

\(\square \)

Lemma 3

Let \(h(\mathbf {u})\) be the same as in lemma 1 and \(\hat{\mathbf {u}} \!= argmax (ln (h(\mathbf {u})))\). Let H be its Hessian where:

$$\begin{aligned} \mathbf {H} = -\frac{\partial ^2 ln(h(\mathbf {u}))}{\partial \mathbf {u}^2}\bigg |_{\mathbf {u}=\hat{\mathbf {u}}} \end{aligned}$$
(34)

and let of the Cholesky decomposition of \(\mathbf {H}\) be \(\mathbf {L}^{T}\mathbf {L}\). Furthermore, define \(f^{*}(\tilde{\mathbf {u}})\) as \(|\mathbf {L}^{-1}| f(\hat{\mathbf {u}} + \mathbf {L}^{-1}\tilde{\mathbf {u}})\) with \(\tilde{\mathbf {u}}\) being \((\tilde{\mathbf {x}_1},\tilde{\mathbf {x}_2},\tilde{\mathbf {x}_3})^{T}\). Then, we have: \(h^*(\tilde{\mathbf {u}})=h_0^{*}(\tilde{\mathbf {x}_3})h_1^{*}(\tilde{\mathbf {x}_1},\tilde{\mathbf {x}_3})h_2^{*}(\tilde{\mathbf {x}_2},\tilde{\mathbf {x}_3})\) for some \(h_0^*\), \(h_1^*\), and \(h_2^*\).

Proof

Pinheiro and Chao (2006) showed that the Hessian has the following block structure:

$$\begin{aligned} \mathbf {H} = \left( \begin{array}{ccc} \triangle &{} 0 &{} \triangle \\ 0 &{} \triangle &{} \triangle \\ \triangle &{} \triangle &{} \triangle \end{array} \right) \end{aligned}$$
(35)

Using the Cholesky decomposition of \(\mathbf {H}\), we can show that \(\mathbf {L}\) has the following block structure:

$$\begin{aligned} \mathbf {L} = \left( \begin{array}{ccc} \triangle &{} 0 &{} \triangle \\ 0 &{} \triangle &{} \triangle \\ 0 &{} 0 &{} \triangle \end{array} \right) \end{aligned}$$
(36)

Consequently, its inverse has the same block structure by the block matrix inverse formula. Define

$$\begin{aligned} \mathbf {L^{-1}} = \left( \begin{array}{ccc} a_{11} &{} 0 &{} a_{13} \\ 0 &{} a_{22} &{} a_{23} \\ 0 &{} 0 &{} a_{33} \end{array} \right) \end{aligned}$$
(37)

Under this transformation, we have:

$$\begin{aligned}&h^{*} (\tilde{\mathbf {u}}) = |\mathbf {L}^{-1}| h(\hat{\mathbf {u}} + \mathbf {L}^{-1} \tilde{\mathbf {u}}) = |\mathbf {L}^{-1}| h(\hat{\mathbf {x}}_1+a_{11}\tilde{\mathbf {x}}_1+a_{13}\tilde{\mathbf {x}}_3,\nonumber \\&\hat{\mathbf {x}}_2+a_{22}\tilde{\mathbf {x}}_2+a_{23}\tilde{\mathbf {x}}_3,\hat{\mathbf {x}}_3+a_{33}\tilde{\mathbf {x}}_3) = |\mathbf {L}^{-1}|h_0(\hat{\mathbf {x}}_3+a_{33}\tilde{\mathbf {x}}_3)\nonumber \\&h_1(\hat{\mathbf {x}}_1+a_{11}\tilde{\mathbf {x}}_1+a_{13}\tilde{\mathbf {x}}_3,\hat{\mathbf {x}}_3+a_{33}\tilde{\mathbf {x}}_3)h_2(\hat{\mathbf {x}}_2+a_{22}\tilde{\mathbf {x}}_2+a_{23}\tilde{\mathbf {x}}_3,\nonumber \\&\hat{\mathbf {x}}_3+a_{33}\tilde{\mathbf {x}}_3)= h_0^*(\tilde{\mathbf {x}}_3)h_1^*(\tilde{\mathbf {x}}_1,\tilde{\mathbf {x}}_3)h_2^*(\tilde{\mathbf {x}}_2,\tilde{\mathbf {x}}_3). \end{aligned}$$
(38)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagnon, J., Liang, H. & Liu, A. Spherical radial approximation for nested mixed effects models. Stat Comput 26, 119–130 (2016). https://doi.org/10.1007/s11222-014-9483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-014-9483-z

Keywords

Navigation