Skip to main content
Log in

Design and Simulation of a High Sensitive Surface Plasmon Resonance Biosensor for Detection of Biomolecules

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

In this paper, a surface plasmon resonance (SPR) biosensor based on black phosphorus (BP)–WSe2 coated metal surface for the detection of biomolecules is designed and simulated. The reported sensor configuration consists of a prism (SF10 glass), ZnO (zinc oxide), gold (Au), WSe2–BP, and sensing medium. The execution parameters including sensitivity, detection accuracy, and quality factor of the proposed sensor are explored at an operating wavelength of 633 nm. The angular interrogation method is used for the reflectance spectra analysis. The overall simulation is performed by COMSOL multiphysics (5.3a). Numerical outcomes demonstrate that the base ZnO layers which have an expansive genuine value of the dielectric constant in a mix with gold, WSe2, and BP are in charge of upgrading the detecting execution of the proposed SPR based biosensor. The reported biosensor achieves maximum sensitivity of 101.5 deg/RIU, the detection accuracy of 1.57 and a quality parameter of 15.62 RIU−1 for a large dynamic range of refractive index differing from 1.33 to 1.43.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rahman, M. S., Hasan, M. R., Rikta, K. A., & Anower, M. S. (2018). A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Optical Materials, 75, 567–573.

    Article  Google Scholar 

  2. Kretschmann, E., & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 23, 2135–2136.

    Article  Google Scholar 

  3. Agranovich, V. M., & Mills, D. L. (1982). Surface polaritons: Electromagnetic waves at surfaces and interfaces. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  4. Raether, H. (1988). Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics (Vol. 111, pp. 4–39). Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  5. Bozhevolnyi, S. I. (2007). Nanophotonics with surface plasmons. In V. M. Shalaev & S. Kawata (Eds.), Advances in nano-optics and nano-photonics (pp. 1–34). Elsevier Science.

  6. Gwon, H. R., & Lee, S. H. (2010). Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration. Materials Transactions, 51, 1150–1155.

    Article  Google Scholar 

  7. Quail, J., Rako, J., & Simon, H. (1983). Long-range surface-plasmon modes in silver and aluminum films. Optics Letters, 8, 377–379.

    Article  Google Scholar 

  8. Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 54, 3–15.

    Article  Google Scholar 

  9. Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462–493.

    Article  Google Scholar 

  10. Homola, J., & Piliarik, M. (2006). Surface plasmon resonance (SPR) sensors. In Surface plasmon resonance based sensors (pp. 45–67). Berlin, Heidelberg: Springer.

  11. Aksimsek, S., Jussila, H., & Sun, Z. (2018). Graphene–MoS2–metal hybrid structures for plasmonic biosensors. Optics Communications, 428, 233–239.

    Article  Google Scholar 

  12. Maurya, J. B., Prajapati, Y. K., Singh, V., Saini, J. P., & Tripathi, R. (2016). Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Optics Communications, 359, 426–434.

    Article  Google Scholar 

  13. Verma, A., Prakash, A., & Tripathi, R. (2015). Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Optical and Quantum Electronics, 47, 1197–1205.

    Article  Google Scholar 

  14. Verma, A., Prakash, A., & Tripathi, R. (2015). Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Optics communications, 357, 106–112.

    Article  Google Scholar 

  15. Rahman, M. S., Anower, M. S., Hasan, M. R., Hossain, M. B., & Haque, M. I. (2017). Design and numerical analysis of highly sensitive Au–MoS2–graphene based hybrid surface plasmon resonance biosensor. Optics Communications, 396, 36–43.

    Article  Google Scholar 

  16. Tabassum, R., Mishra, S. K., & Gupta, B. D. (2013). Surface plasmon resonance-basedfiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thinfilms. Physical Chemistry Chemical Physics: PCCP, 15, 11868–11874.

    Article  Google Scholar 

  17. Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., & Zhang, H. (2013). Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. Journal of the American Chemical Society, 135, 5998–6001.

    Article  Google Scholar 

  18. Liao, H., Wen, W., Wong, G. K. L., & Yang, G. (2003). Optical nonlinearity of nanocrystalline Au/ZnO compositefilms. Optics Letters, 28, 1790–1792.

    Article  Google Scholar 

  19. Yu, L., Lee, Y.-H., Ling, X., Santos, E. J. G., Shin, Y. C., Lin, Y., et al. (2014). Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Letters, 14, 3055–3063.

    Article  Google Scholar 

  20. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., & Kis, A. (2013). Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 8, 497–501.

    Article  Google Scholar 

  21. Kumar, S., Sharma, G., & Singh, V. (2015). The performance of surface plasmon resonance sensor in presence of linearly graded film region. Optik, 126, 4111–4114.

    Article  Google Scholar 

  22. Matsui, J., Akamatsu, K., Hara, N., Miyoshi, D., Nawafune, H., Tamaki, K., et al. (2005). SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Analytical Chemistry, 77(13), 4282–4285.

    Article  Google Scholar 

  23. Wu, L., Chu, H., Koh, W., & Li, E. (2010). Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 18, 14395–14400.

    Article  Google Scholar 

  24. Sharma, A., Jha, R., & Gupta, B. (2007). Fiber-opticsensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7, 1118–1129.

    Article  Google Scholar 

  25. Zeng, S., Hu, S., Xia, J., Anderson, T., Dinh, X.-Q., Meng, X.-M., et al. (2015). Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors and Actuators B: Chemical, 207, 801–810.

    Article  Google Scholar 

  26. Maier, S. A. (2007). Plasmonics: fundamentals and applications. New York: Springer.

    Book  Google Scholar 

  27. Wakamatsu, T. (2010). Characteristics of metal enhanced evanescent-wave microcavities. Sensors, 10, 8751–8760.

    Article  Google Scholar 

  28. Sambles, J. R., Bradbery, G. W., & Yang, F. (1991). Optical excitation of surface plasmons: An introduction. Contemporary Physics, 32, 173–183.

    Article  Google Scholar 

  29. Lakowicz, J. R. (2004). Radiative decay engineering 3, “Surface plasmon-coupled directional emission, “ Anal. Biochem., 324, 153–169.

    Google Scholar 

  30. Kostruba, A., Ohar, M., Kulyk, B., Zolobko, O., & Stetsyshyn, Y. (2012). Ellipsometric studies of optical properties of copper doped ZnO films on glass substrate. Alloys and Compounds, 518, 96–100.

    Article  Google Scholar 

  31. Kumar, R., Kushwaha, A. S., Srivastava, M., Mishra, H., & Srivastava, S. K. (2018). Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Applied Physics A, 124, 235.

    Article  Google Scholar 

  32. Meshginqalam, B., & Barvestani, J. (2018). Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sensors Journal, 18, 7537–7543.

    Article  Google Scholar 

  33. Hering, K., Cialla, D., Ackermann, K., Dörfer, T., Möller, R., Schneidewind, H., et al. (2008). SERS: a versatile tool in chemical and biochemical diagnostics. Analytical and Bioanalytical Chemistry, 390, 113–124.

    Article  Google Scholar 

  34. Ahad, S. L., Sifat, A. H., & Islam, M. Z. (2015). Performance analysis and optimization of Surface Plasmon Polariton based sensing using Kretschmann–Raether configuration with gold layer. In 2015 annual IEEE India conference (INDICON), New Delhi, 2015, pp. 1–6.

  35. Biednov, M., Lebedeva, T., & Shpilovuy, P. (2015). Gold and aluminum based surface plasmon resonance biosensors: sensitivity enhancement. In Optical SENSORS 2015 (Vol. 95061).

  36. Ouyang, Q., Zeng, S., Dinh, X.-Q., Coquet, P., & Yong, K.-T. (2016). Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Engineering, 140, 134–139.

    Article  Google Scholar 

  37. Xia, L., Yin, S., Gao, H., Deng, Q., & Du, C. (2011). Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold–silver bimetallic film configuration. Plasmonics, 6, 245–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamal Hosain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, C., Hosain, M.K. & Sazzad, A.A. Design and Simulation of a High Sensitive Surface Plasmon Resonance Biosensor for Detection of Biomolecules. Sens Imaging 21, 2 (2020). https://doi.org/10.1007/s11220-019-0267-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-019-0267-6

Keywords

Navigation