Skip to main content
Log in

Target Image Enhancement in Radar Imaging Using Fractional Fourier Transform

  • Original Paper
  • Published:
Sensing and Imaging: An International Journal Aims and scope Submit manuscript

Abstract

This paper presents a new Range-Doppler Algorithm based on Fractional Fourier Transform (RDA-FrFT) to obtain High-Resolution (HR) images for targets in radar imaging. The performance of the proposed RDA-FrFT is compared with the classical RDA algorithm, which is based on the Fast Fourier Transform (FFT). A closed-form expression for the range and azimuth compression of the proposed RDA-FrFT is mathematically derived and analyzed from the HR Synthetic Aperture Radar (SAR) imaging point of view. The proposed RDA-FrFT takes its advantage of the property of the FrFT to resolve chirp signals with high precision. Results show that the proposed RDA-FrFT gives low Peak Side-Lobe (PSL) and Integrated Side-Lobe (ISL) levels in range and azimuth directions for detected targets. HR images are obtained using the proposed RDA-FrFT algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jun, S., Zhang, X., & Yang, J. (2008). Principle and methods on bistatic SAR signal processing via time correlation. Journal of IEEE Transactions on Geoscience and Remote Sensing, 46(10), 3163–3178.

    Article  Google Scholar 

  2. Yates, G., Horne, A. M., & Blake, A. P. (2004). Bistatic SAR image formation. In Proceedings of EUSAR, Ulm, Germany (pp. 581–584).

  3. Nies, H., Loffeld, O., & Natroshvili, K. (2007). Analysis and focusing of bistatic airborne SAR data. Journal of IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3342–3349.

    Article  Google Scholar 

  4. Hongyuan, Z., Yunhua, Z., & Jingshan, J. (2000). Synthetic aperture radar simulation system based on Matlab. Proc. ISAPE 5th International, Beijing, China, pp. 130–133.

  5. Oliver, C., & Quegan, S. (2004). Understanding synthetic aperture radar images. Raleigh: SciTech Publishing.

    Google Scholar 

  6. Zheng, B. A. O., Mengdao, X., & Tong, W. (2005). Radar imaging techniques. Beijing: Publishing House of Electronics Industry.

    Google Scholar 

  7. Synthetic aperture radar. (2008). In Wikipedia, The Free Encyclopeida. http://en.wikipedia.org/wiki/Synthetic_aperture_radar. Accessed 23 October 2008.

  8. Capus, C., & Brown, K. (2003). Short-time fractional fourier methods for the time-frequency representation of chirp signals. The Journal of the Acoustical Society of America, 113(6), 3253–3263.

    Article  Google Scholar 

  9. Capus, C., & Brown, K. (2003). Fractional Fourier transform of the Gaussian and fractional domain signal support. Journal of IEEE Proceedings of Vision Image Signal Process, 150(2), 99–106.

    Article  Google Scholar 

  10. Ozaktas, H. M., Zalevsky, Z., & Kutay, M. A. (2001). The fractional Fourier transform with applications in optics and signal processing. New York: Wiley.

    Google Scholar 

  11. Tao, R., Deng, B., Zhang, W. -Q., & Wang, Y. (2008). Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. Journal of IEEE Transactions on Signal Processing, 56(1), 158–171.

    Article  MathSciNet  Google Scholar 

  12. Ozaktas, H. M., Arikan, O., Kutay, M. A., & Bozdagi, G. (1996). Digital computation of the fractional Fourier transform. Journal of IEEE Signal Processing, 44, 2141–2150.

    Article  Google Scholar 

  13. Cumming, I. J., & Wong, F. H. (2005). Digital processing of synthetic aperture radar data. London: Artech House.

    Google Scholar 

  14. Mahafza, & Bassem, R. (2005). Radar systems analysis and design using matlab (2nd ed.). Upper Saddle River: Chapman & Hall/CRC.

    MATH  Google Scholar 

  15. Levenon, N., & Mozeson, E. (2004). Radar signals. New York: Wiley.

    Book  Google Scholar 

  16. Amein, A. S., & Soraghan, J. J. (2007). Fractional chirp scaling algorithm: Mathematical model. Journal of IEEE Signal Processing, 55, 4162–4172.

    Article  MathSciNet  Google Scholar 

  17. Candan, C., Kutay, M. A., & Ozaktas, H. M. (2000). The discrete fractional Fourier transform. Journal of IEEE Signal Processing, 48, 1329–1337.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ran, T., Xue-Mei, L., Yan-Lei, L., & Yue, W. (2009). Time-delay estimation of chirp signals in the fractional Fourier domain. Journal of IEEE Signal Processing, 57, 2852–2855.

    Article  Google Scholar 

  19. Candan, C. (2008). On the implementation of optimal receivers for LFM signals using fractional Fourier transform. In Proceedings of IEEE Conference on RADAR ‘2008. (pp. 1–4).

  20. Zayed, A. I. (1996). On the relationship between the Fourier and fractional Fourier transforms. Journal of IEEE Signal Processing Letter, 3(12), 310–311.

    Article  MathSciNet  Google Scholar 

  21. Papoulis, A. (1968). Systems and transforms with application to optics. New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. El-Mashed.

Appendices

Appendix 1

1.1 Range FrFT

$$ S_{1} (f_{t} ,\eta ) = \int {A_{1} W_{r} \cdot W_{a} \cdot \exp [j\phi_{1} (t,\eta ,\,f_{t} )]} $$
(25)

where

$$ \phi_{1} (t,\eta ,\,f_{t} ) = \frac{{ - 4\pi f_{o} R(\eta )}}{c} + \pi K_{r} \left( {t - \frac{2R(\eta )}{c}} \right)^{2} + \pi \left( {\left( {f_{t}^{2} u_{o}^{\prime 2} + t^{2} u_{o}^{2} } \right)\cot \alpha - 2tf_{t} \csc \alpha } \right) $$
(26)

The derivative of ϕ 1(t, η, f t ) with respect to t is given by

$$ \frac{d\phi (t)}{dt} = 2\pi K_{r} \left( {t - \frac{2R(\eta )}{c}} \right) + 2\pi tu_{o}^{2} \cot \alpha - 2\pi f_{t} \csc \alpha $$
(27)

To use the PSP, we should find the range time t* when \( \frac{d\phi_{1} (t)}{dt} = 0 \)

$$ 2\pi K_{r} \left( {t - \frac{2R(\eta )}{c}} \right) + 2\pi tu_{o}^{2} \cot \alpha - 2\pi f_{t} \csc \alpha = 0 $$
(28)
$$ t\left[ {K_{r} + u_{o}^{2} \cot \alpha } \right] = f_{t} \csc \alpha + \frac{{2K_{r} R(\eta )}}{c} $$
(29)
$$ t^{*} = \frac{{\frac{{2K_{r} R(\eta )}}{c} + f_{t} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }} $$
(30)

The solution of the integral of S 1(f t , η) can be written as

$$ S_{1} (f_{t} ,\eta ) = A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left[ {j\phi_{1} \left( {t^{*} ,\eta ,\,f_{t} } \right)} \right], $$
(31)

where

$$ \begin{aligned} \phi_{1} \left( {t^{*} ,\eta ,\,f_{t} } \right) & = \frac{{ - 4\pi f_{o} R(\eta )}}{c} + \left( {t^{*} - \frac{2R(\eta )}{c}} \right)^{2} + \pi f_{t}^{2} u_{o}^{\prime 2} \cot \alpha + \pi t^{*2} u_{o}^{2} \cot \alpha - 2\pi t^{*} f_{t} \csc \alpha \\ & = \frac{ - 4\pi R(\eta )}{c}\left( {f_{o} + \frac{{K_{r} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}f_{t} } \right) + \pi f_{t}^{2} \left( {u_{o}^{\prime 2} \cot \alpha - \frac{{2\csc^{2} \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) + \frac{{4\pi K_{r}^{2} R^{2} (\eta )}}{{c^{2} }}\left( {\frac{{u_{o}^{2} \cot \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) \\ \end{aligned} $$
(32)

The last term in Eq. 32 is the Residual Video Phase (RVP), which is a consequence of the range FrFT of the received chirp signal that should be removed to avoid defocusing of the constructed SAR image, hence

$$ \phi_{1} \left( {t^{*} ,\eta ,\,f_{t} } \right) \approx \frac{ - 4\pi R(\eta )}{c}\left( {f_{o} + \frac{{K_{r} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}f_{t} } \right) + \pi f_{t}^{2} \left( {u_{o}^{\prime 2} \cot \alpha - \frac{{2\csc^{2} \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right). $$
(33)

1.2 Range reference FrFT

$$ S_{R} (f_{t} ) = \int {A_{o} \cdot \exp \left( {j\phi_{R} (t,\, f_{t} )} \right)} dt , $$
(34)

where

$$ \phi_{R} (t,\,f_{t} ) = \pi K_{r} (t - t_{d} )^{2} + \pi \left( {f_{t}^{2} u_{o}^{\prime 2} + t^{2} u_{o}^{2} } \right)\cot \alpha - 2\pi tf_{t} \csc \alpha $$
(35)

To use the PSP, we should find the range time t* when \( \frac{d\phi_R (t)}{dt} = 0 \)

$$ \frac{d\phi_R (t)}{dt} = 2\pi K_{r} (t - t_{d} ) + 2\pi tu_{o}^{2} \cot \alpha - 2\pi f_{t} \csc \alpha = 0 $$
(36)
$$ t^{*} = \frac{{f_{t} \csc \alpha + K_{r} t_{d} }}{{K_{r} + u_{o}^{2} \cot \alpha }} $$
(37)

The solution of the integral of S R (f t ) can be written as

$$ S_{R} (f_{t} ) = A_{o} \cdot \exp \left( {j\phi_{R} \left( {t^{*} ,\,f_{t} } \right)} \right) $$
(38)
$$ \begin{aligned} \phi_{R} \left( {t^{*} ,\,f_{t} } \right) & = \pi K_{r} \left( {\frac{{f_{t} \csc \alpha + K_{r} t_{d} }}{{K_{r} + u_{o}^{2} \cot \alpha }} - t_{d} } \right)^{2} + \pi f_{t}^{2} u_{o}^{\prime 2} \cot \alpha + \pi u_{o}^{2} \cot \alpha \left( {\frac{{f_{t} \csc \alpha + K_{r} t_{d} }}{{K{}_{r} + u_{o}^{2} \cot \alpha }}} \right)^{2} \\ & \quad - 2\pi f_{t} \csc \alpha \left( {\frac{{f_{t} \csc \alpha + K_{r} t_{d} }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) \\ & = \pi f_{t}^{2} \left( {u_{o}^{\prime 2} \cot \alpha - \frac{{2\csc^{2} \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) - \frac{{2\pi f_{t} K_{r} t_{d} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }} + \pi K_{r}^{2} t_{d}^{2} \left( {\frac{{u_{o}^{2} \cot \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right). \\ \end{aligned} $$
(39)

1.3 Range-IFrFT

To find the range frequency \( f_{t}^{*} \), the derivative \( \frac{{d\phi_3 (f_{t} )}}{{df_{t} }} \) must be equal zero,

$$ \begin{aligned} \frac{{d\phi_{3} (f_{t} )}}{{df_{t} }} & = \frac{ - 4\pi R(\eta )}{c}\left( {\frac{{K_{r} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) - \frac{{2\pi K_{r} t_{d} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }} + 4\pi f_{t} \left( {u_{o}^{\prime 2} \cot \alpha - \frac{{2\csc^{2} \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) \\ & \quad + 2\pi t\csc \alpha - 2\pi f_{t} u_{o}^{\prime 2} \cot \alpha = 0 \\ \end{aligned} $$
(40)

Hence,

$$ f_{t}^{*} = M_{1} \cdot \left( {\frac{2R(\eta )}{c} + M_{2} (t)} \right) $$
(41)

where \( M_{1} = {{K_{r} } \mathord{\left/ {\vphantom {{K_{r} } {\left[ {\left( {K_{r} + u_{o}^{2} \cot \alpha } \right) \cdot \left( {{{u_{o}^{\prime 2} \cos \alpha - 4\csc \alpha } \mathord{\left/ {\vphantom {{u_{o}^{\prime 2} \cos \alpha - 4\csc \alpha } {\left( {K_{r} + u_{o}^{2} \cot \alpha } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {K_{r} + u_{o}^{2} \cot \alpha } \right)}}} \right)} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\left( {K_{r} + u_{o}^{2} \cot \alpha } \right) \cdot \left( {{{u_{o}^{\prime 2} \cos \alpha - 4\csc \alpha } \mathord{\left/ {\vphantom {{u_{o}^{\prime 2} \cos \alpha - 4\csc \alpha } {\left( {K_{r} + u_{o}^{2} \cot \alpha } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {K_{r} + u_{o}^{2} \cot \alpha } \right)}}} \right)} \right]}} \), is constant. \( M_{2} (t) = t_{d} - t - tu_{o}^{2} \cot \alpha /K_{r} \), which is constant for azimuth FrFT.

The solution of the integral of \( S_{3} (t,\eta ) \)can be written as

$$ S_{3} (t,\eta ) = A_{o}^{2} \cdot A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left( {j\phi_{3} (t,\, f_{t}^{*} )} \right) $$
(42)

where

$$ \begin{aligned} \phi_{3} \left( {t,\, f_{t}^{*} } \right) & = \frac{ - 4\pi R(\eta )}{c}\left( {f_{o} + M_{1} \left( {\frac{{K_{r} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right)\left( {\frac{2R(\eta )}{c} + M_{2} (t)} \right)} \right) \\ & \quad - \frac{{2\pi K_{r} t_{d} \csc \alpha \cdot M_{1} }}{{K_{r} + u_{o}^{2} \cot \alpha }}\left( {\frac{2R(\eta )}{c} + M_{2} (t)} \right) + 2\pi M_{1}^{2} \left( {u_{o}^{\prime 2} \cot \alpha - \frac{{2\csc^{2} \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right)\left( {\frac{2R(\eta )}{c} + M_{2} (t)} \right)^{2} \\ & \quad + 2\pi t\csc \alpha \cdot M_{1} \left( {\frac{2R(\eta )}{c} + M_{2} (t)} \right) - \pi u_{o}^{\prime 2} \cot \alpha \cdot M_{1}^{2} \left( {\frac{2R(\eta )}{c} + M_{2} (t)} \right)^{2} - \pi t^{2} u_{o}^{2} \cot \alpha \\ \end{aligned} $$
(43)

The above expression contains the RVP. We can remove it from our derivation, since it only adds additional complexity to the mathematical calculations.

$$ \phi_{3} \left( {t,\, f_{t}^{*} } \right) \approx \frac{2\pi R(\eta )}{c}\left\{ \begin{gathered} - 2f_{o} - 2M_{1} \cdot M_{2} (t)\left( {\frac{{K_{r} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) - \frac{{2K_{r} t_{d} M_{1} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }} + 4M_{1}^{2} M_{4} M_{2} (t) \hfill \\ + t \cdot M_{1} \csc \alpha - 2M_{1}^{2} M_{2} (t)u_{o}^{\prime 2} \cot \alpha \hfill \\ \end{gathered} \right\} + M_{3} (t) $$

where

$$ M_{4} = u_{o}^{\prime 2} \cot \alpha - \left( {\frac{{2\csc^{2} \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right)\quad {\text{is}}\;{\text{constant}}. $$
(44)

Appendix 2

2.1 Azimuth FrFT

$$ S_{4} (t,\,f_{\eta } ) = \int {S_{3} (t,\eta ) \cdot K_{b} (\eta ,f_{\eta } )d\eta } = \int {A_{o}^{3} \cdot A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left( {j\phi_{4} (t,\,f_{\eta } ,\eta )} \right)d\eta } $$
(45)

where

$$ K_{b} (\eta ,f_{\eta } ) = A_{o} \cdot \exp \left( {j\pi \left( {f_{\eta }^{2} u_{o}^{\prime 2} + \eta^{2} u_{o}^{2} } \right)\cot \beta - 2\eta f_{\eta } \csc \beta } \right),\quad \beta = b\pi /2. $$
(46)

After applying the PSP, the final expression is

$$ S_{4} (t,\,f_{\eta } ) = A_{o}^{3} \cdot A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left( {j\phi_{4} \left( {t,\,f_{\eta } ,\eta^{*} } \right)} \right) $$
(47)

where

$$ M_{5} (t) = \frac{1}{c}\left\{ \begin{gathered} - 2f_{o} - 2M_{1} \cdot M_{2} (t)\left( {\frac{{K_{r} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }}} \right) - \frac{{2K_{r} t_{d} M_{1} \csc \alpha }}{{K_{r} + u_{o}^{2} \cot \alpha }} + 4M_{1}^{2} M_{4} M_{2} (t) \hfill \\ + t \cdot M_{1} \csc \alpha - 2M_{1}^{2} M_{2} (t)u_{o}^{\prime 2} \cot \alpha \hfill \\ \end{gathered} \right\} $$
(48)
$$ \begin{aligned} \phi_{4} \left( {t, f_{\eta } ,\eta^{*} } \right) & = 2\pi \cdot M_{5} (t) \cdot \left( {R_{o} + \frac{{V^{2} }}{{2R_{o} }} \cdot \left( {\frac{{f_{\eta } \csc \beta }}{{u_{o}^{2} \cot \beta + V^{2} M_{5} (t)/R_{o} }}} \right)^{2} } \right) + M_{3} (t) + \pi \cdot f_{\eta }^{2} u_{o}^{\prime 2} \cot \beta \\ & \quad + \pi \cdot u_{o}^{2} \cot \beta \cdot \left( {\frac{{f_{\eta } \csc \beta }}{{u_{o}^{2} \cot \beta + V^{2} M_{5} (t)/R_{o} }}} \right)^{2} - 2\pi \cdot f_{\eta } \csc \beta \cdot \left( {\frac{{f_{\eta } \csc \beta }}{{u_{o}^{2} \cot \beta + V^{2} M_{5} (t)/R_{o} }}} \right). \\ \end{aligned} $$
(49)

2.2 Azimuth Reference FrFT

The azimuth reference function used for the RDA is given by:

$$ S_{a} (\eta ) = \exp (j2\pi K_{a} \eta ) $$
(50)

Its FrFT is given by:

$$ S_{a} (f_{\eta } ) = \int {S_{a} (\eta ) \cdot K_{b} (\eta ,f_{\eta } )d\eta } = \int {A_{o} \cdot \exp \left( {j\phi_{a} (\eta ,f_{\eta } )} \right)d\eta } $$
(51)

then,

$$ S_{a} (f_{\eta } ) = A_{o} \cdot \exp \left( {j\phi_{a} \left( {\eta^{*} , f_{\eta } } \right)} \right) $$
(52)

The next step is multiplying \( S_{4} (t,\,f_{\eta } )\,{\text {by}}\,S_{a} (f_{\eta } )\,{\text {to}\,{get}} \):

$$ S_{5} (t,\,f_{\eta } ) = A_{o}^{4} \cdot A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left( {j\phi_{5} \left( {t, f_{\eta }, \eta^{*} } \right)} \right) $$
(53)

where

$$ \phi_{5} \left( {t,\,f_{\eta } ,\eta^{*} } \right) = \phi_{4} \left( {t,\,f_{\eta } ,\eta^{*} } \right) + \phi_{a} \left( {\eta^{*} , f_{\eta } } \right). $$
(54)

2.3 Azimuth IFrFT

$$ S_{6} (t,\eta ) = \int {S_{5} (t,\,f_{\eta } ) \cdot K_{ - b} (f_{\eta } ,\eta )df_{\eta } = \int {A_{o}^{5} \cdot A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left( {j\phi_{6} \left( {t, f_{\eta }, \eta^{*} } \right)} \right)} df_{\eta } } $$
(55)

where

$$ \begin{aligned} \phi_{6} \left( {t, f_{\eta } ,\eta^{*} } \right) & = 2\pi \cdot M_{5} (t) \cdot \left( {R_{o} + \frac{{V^{2} M_{6}^{2} (t)}}{{2R_{o} }}f_{\eta }^{2} } \right) + M_{3} (t) + \pi \cdot u_{o}^{2} M_{6}^{2} (t) \cdot f_{\eta }^{2} \cot \beta - 2\pi \cdot M_{6} (t)f_{\eta } \csc \beta \\ & \quad + \frac{{2\pi \cdot K_{a} }}{{u_{o}^{2} \cot \beta }}\left( {f_{\eta } \csc \beta - K_{a} } \right) + \pi \cdot f_{\eta } u_{o}^{\prime 2} \cot \beta - \frac{2\pi \csc \beta }{{u_{o}^{2} \cot \beta }}\left( {f_{\eta }^{2} \csc \beta - K_{a} f_{\eta } } \right) - \pi \eta^{2} u_{o}^{2} \cot \beta + 2\pi \eta \cdot f_{\eta } \csc \beta \\ \end{aligned} $$
(56)

After applying the PSP, the azimuth frequency is

$$ f_{\eta }^{*} = \frac{{M_{6} (t)\csc \beta - 2K_{a} /u_{o}^{2} \cos \beta - u_{o}^{'2} \cot \beta /2 - \eta \csc \beta }}{{V^{2} M_{5} (t) \cdot M_{6}^{2} (t)/R_{o} + u_{o}^{2} M_{6}^{2} (t)\cot \beta - 2\csc \beta /u_{o}^{2} \cos \beta }} $$
(57)

and

$$ M_{6} (t) = \frac{\csc \beta }{{u_{o}^{2} \cot \beta + V^{2} M_{5} (t)/R_{o} }} $$
(58)

The solution to the integral of \( S_{6} (t,\eta ) \) can be written as

$$ S_{6} (t,\eta ) = A_{o}^{5} \cdot A_{1} \cdot W_{r} \cdot W_{a} \cdot \exp \left( {j\phi_{6} \left( {t,\,f_{\eta }^{*} ,\eta^{*} } \right)} \right) $$
(59)

where \( \phi_{6} \left( {t,\,f_{\eta }^{*} ,\eta^{*} } \right) \) is given in equation (56) replacing f η by \( f_{\eta }^{*} \) in equation (57).

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Mashed, M.G., Dessouky, M.I., El-Kordy, M. et al. Target Image Enhancement in Radar Imaging Using Fractional Fourier Transform. Sens Imaging 13, 37–53 (2012). https://doi.org/10.1007/s11220-011-0069-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11220-011-0069-y

Keywords

Navigation