Skip to main content
Log in

Inferring Intrinsic Stellar EUV and Lyman-Alpha Fluxes and Their Effects on Exoplanet Atmospheres

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

EUV radiation is primarily responsible for driving hydrodynamic mass loss and thus determining whether an exoplanet can retain its atmosphere and water. The Lyman-\(\alpha \) flux is primarily responsible for photo-dissociating water and methane, and therefore plays a major role in determining the chemistry in the upper atmospheres of exoplanets. Since interstellar hydrogen absorbs much of the EUV and Lyman-\(\alpha \) radiation, reconstruction and theoretical techniques are needed to determine the intrinsic flux levels received by exoplanets.

We describe the techniques and their limitations for estimating the extreme ultraviolet (EUV) spectral energy distribution (10–91.2 nm) and hydrogen Lyman-\(\alpha \) flux (121.6 nm) emitted by host stars and incident on exoplanet atmospheres.

We evaluate how each reconstruction technique can match the observed solar EUV spectral energy distribution and Lyman-\(\alpha \) flux.

Each technique has its limitations, but the techniques that can reconstruct the observed solar emission and are based on stellar activity observables that are not affected by interstellar absorption should best explain the intrinsic EUV and Lyman-\(\alpha \) stellar emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Chadney JM, Galand M, Unruh YC, Koskinen TT, Sanz-Forcada J (2015) XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus 250:357

    Article  ADS  Google Scholar 

  • Craig N, Abbott M, Finley D, Jessop H, Howell SB, Mathioudakis M, Sommers J, Vallerga JV, Malina RF (1997) The Extreme Ultraviolet Explorer stellar spectral atlas. Astrophys J Suppl Ser 113:131

    Article  ADS  Google Scholar 

  • Del Zanna G, Dere KP, Young PR, Landi E, Mason HE (2015) CHIANTI – an atomic database for emission lines. Version 8. Astron Astrophys 582:A56

    Article  Google Scholar 

  • Dere KP, Del Zann G, Young PR, Land E (2023) CHIANTI – an atomic database for emission lines. XVII. Version 10.1: revised ionization and recombination rates and other updates. Astrophys J Suppl Ser 268:52

    Article  ADS  Google Scholar 

  • Duvvuri GM, Cauley PW, Aguirre FC et al. (2023) The high-energy spectrum of the young planet host V1298 Tau. Astron J 166:196

    Article  ADS  Google Scholar 

  • Ehrenreich D, Désert JM (2011) Mass-loss rates for transiting exoplanets. Astron Astrophys 529:A136

    Article  ADS  Google Scholar 

  • France K, Linsky JL, Tian F, Froning CS, Roberge A (2012) Time-resolved ultraviolet spectroscopy of the M-dwarf GJ 876 exoplanetary system. Astrophys J Lett 750:L32

    Article  ADS  Google Scholar 

  • France K, Fleming B, Youngblood A et al. (2022) Extreme-ultraviolet Stellar Characterization for Atmospheric Physics and Evolution mission: motivation and overview. J Astron Telesc Instrum Syst 8:014006

    Article  ADS  Google Scholar 

  • Guinan EF, Engle SG, Durbin A (2016) Living with a red dwarf: rotation and X-ray and ultraviolet properties of the halo population Kapteyn’s star. Astrophys J 821:81

    Article  ADS  Google Scholar 

  • Hintz D, Peacock S, Barman T (2023) Modeling the chromosphere and transition region of planet-hosting star GJ 436. Astrophys J 954:73

    Article  ADS  Google Scholar 

  • Kochukhov O, Hackman T, Lehtinen JJ, Wehrhahn A (2020) Hidden magnetic fields of young suns. Astron Astrophys 635:A142

    Article  ADS  Google Scholar 

  • Linsky JL, Brown A, Gayley K et al. (1993) Goddard High-Resolution Spectrograph observations of the local interstellar medium and the deuterium/hydrogen ratio along the line of sight toward Capella. Astrophys J 402:694

    Article  ADS  Google Scholar 

  • Linsky JL, Fontenla J, France K (2014) The intrinsic extreme ultraviolet fluxes of F5 V TO M5 V Stars. Astrophys J 780:61

    Article  ADS  Google Scholar 

  • Linsky JL, Redfield S, Ryder D, Chasan-Taber A (2022) Inhomogeneity within local interstellar clouds. Astron J 164:106

    Article  ADS  Google Scholar 

  • Malamut C, Redfield S, Linsky JL, Wood BE, Ayres TR (2014) The structure of the local interstellar medium. VI. New Mg II, Fe II, and Mn II observations toward stars within 100 pc. Astrophys J 787:75

    Article  ADS  Google Scholar 

  • Miguel Y, Kaltenegger L, Linsky JL, Rugheimer S (2015) The effect of Lyman \(\alpha \) radiation on mini-Neptune atmospheres around M stars: application to GJ 436b. Mon Not R Astron Soc 446:345

    Article  ADS  Google Scholar 

  • Morrison R, McCammon D (1983) Interstellar photoelectric absorption cross sections, 0.03-10 keV. Astrophys J 270:119

    Article  ADS  Google Scholar 

  • Namekata K, Toriumi S, Airapetia VS et al. (2023) Reconstructing the XUV spectra of active Sun-like stars using solar scaling relations with magnetic flux. Astrophys J 945:147

    Article  ADS  Google Scholar 

  • Peacock S, Barman T, Shkolnik EL, Hauschildt PH, Baron E (2019a) Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: the TRAPPIST-1 system. Astrophys J 871:235

    Article  ADS  Google Scholar 

  • Peacock S, Barman T, Shkolnik EL, Hauschildt PH, Baron E, Fuhrmeister B (2019b) Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: GJ 832, GJ 176, and GJ 436. Astrophys J 886:77

    Article  ADS  Google Scholar 

  • Peacock S, Barman T, Shkolnik EL, Parke Loyd RO, Schneider AC, Pagano I, Meadows S (2020) HAZMAT VI: the evolution of extreme ultraviolet radiation emitted from early M stars. Astrophys J 895:5

    Article  ADS  Google Scholar 

  • Peacock S, Barman T, Schneider AC et al. (2022) Accurate modeling of Lyman-\(\alpha \) profiles and their impact on photolysis of terrestrial planet atmospheres. Astrophys J 933:235

    Article  ADS  Google Scholar 

  • Pevtsov AA, Fisher GH, Acton LW, Longcope DW, Johns-Krull CM, Kankelborg CC, Metcalf TR (2003) The relationship between X-ray radiance and magnetic flux. Astrophys J 598:1387

    Article  ADS  Google Scholar 

  • Reiners A, Shulyak D, Käpylä PJ et al. (2022) Magnetism, rotation, and non-thermal emission in cool stars. Average magnetic field measurements in 292 M dwarfs. Astron Astrophys 662:A41

    Article  Google Scholar 

  • Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys J 622:680

    Article  ADS  Google Scholar 

  • Loyd ROP, Kevin F, Youngblood A et al. (2016) The MUSCLES Treasury Survey. III. X-ray to infrared spectra of 11 M and K stars hosting planets. Astrophys J 82:102

    Article  ADS  Google Scholar 

  • Rugheimer S, Kaltenegger L, Segura A, Linsky J, Mohanty S (2015) Effect of UV radiation on the spectral fingerprints of Earth-like planets orbiting M stars. Astrophys J 809:57

    Article  ADS  Google Scholar 

  • Sanz-Forcada J, Micela G, Ribas I, Pollock AMT, Eiroa C, Velasco A, Solano E, García-Alvarez D (2011) Estimation of the XUV radiation onto close planets and their evaporation. Astron Astrophys 532:6

    Article  ADS  Google Scholar 

  • Shoda M, Takasao S (2021) Corona and XUV emission modelling of the Sun and Sun-like stars. Astron Astrophys 656:111

    Article  ADS  Google Scholar 

  • Sreejith AG, Fossati L, Youngblood A, France K, Ambily S (2020) Ca II H&K stellar activity parameter: a proxy for extreme ultraviolet stellar fluxes. Astron Astrophys 644:A67

    Article  ADS  Google Scholar 

  • Tilipman D, Vieytes M, Linsky L, Buccino AP, France K (2021) Semiempirical modeling of the atmospheres of the M dwarf exoplanet hosts GJ 832 and GJ 581. Astrophys J 909:61

    Article  ADS  Google Scholar 

  • Wood BE, Müller H-R, Zank GP (2000) Hydrogen Lyman-\(\alpha \) absorption predictions by Boltzmann models of the heliosphere. Astrophys J 542:493

    Article  ADS  Google Scholar 

  • Wood BE, Linsky JL, Hébrard G, Williger GM, Moos HW, Blair WP (2004) Two new low Galactic D/H measurements from the Far Ultraviolet Spectroscopic Explorer. Astrophys J 609:838

    Article  ADS  Google Scholar 

  • Wood BE, Redfield S, Linsky JL, Müller H-R, Zank GP (2005) Stellar Lyman-\(\alpha \) emission lines in the Hubble Space Telescope Archive: intrinsic line fluxes and absorption from the heliosphere and astrospheres. Astrophys J Suppl Ser 159:118

    Article  ADS  Google Scholar 

  • Woods TN, Chamberlin PC, Harder JW et al. (2009) Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophys Res Lett 36:L01101

    Article  ADS  Google Scholar 

  • Youngblood A, France K, Loyd ROP (2016) The MUSCLES Treasury Survey. II. Intrinsic Lyman-\(\alpha \) and extreme ultraviolet spectra of K and M dwarfs with exoplanets. Astrophys J 824:101

    Article  ADS  Google Scholar 

  • Youngblood A, Sebastian PJ, Ayres T et al. (2022) Intrinsic Lyman-\(\alpha \) profiles of high-velocity G, K, and M dwarfs. Astrophys J 926:129

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the NASA Outer Heliosphere Guest Investigators Program to Wesleyan University and the University of Colorado through grant 80NSSC20K0785. We thank Kevin France and Dennis Tilipman for permission to the use of their unpublished figures and the other authors for permission to include their published figures.

Facilities: HST(STIS), HST(HRS).

Funding

NASA Outer Heliosphere Guest Investigators Program to Wesleyan University and the University of Colorado through grant 80NSSC20K0785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Linsky.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests or conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linsky, J.L., Redfield, S. Inferring Intrinsic Stellar EUV and Lyman-Alpha Fluxes and Their Effects on Exoplanet Atmospheres. Space Sci Rev 220, 32 (2024). https://doi.org/10.1007/s11214-024-01064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-024-01064-3

Keywords

Navigation