B.J. Anderson, C.L. Johnson, H. Korth, J.A. Slavin, R.M. Winslow, R.J. Phillips, R.L. McNutt Jr., S.C. Solomon, Steady-state field-aligned currents at Mercury. Geophys. Res. Lett. 41(21), 7413–7761 (2014). https://doi.org/10.1002/2014GL061677. pp. i-v
Article
Google Scholar
D.J. Anderson, G. Colombo, P.B. Esposito, E.L. Lau, G.B. Trager, The mass, gravity field, and ephemeris of Mercury. Icarus 71, 337–349 (1987). https://doi.org/10.1016/0019-1035(87)90033-9
ADS
Article
Google Scholar
J.D. Anderson, J.K. Campbell, J.E. Ekelund, J. Ellis, J.F. Jordan, Anomalous orbital-energy changes observed during spacecraft flybys of Earth. Phys. Rev. Lett. 100, 091102 (2008). https://doi.org/10.1103/PhysRevLett.100.091102
ADS
Article
Google Scholar
B.J. Anderson, M.H. Acun a, H. Korth, J.A. Slavin, H. Uno, C.L. Johnson, M.E. Purucker, S.C. Solomon, J.M. Raines, T.H. Zurbuchen, G. Gloecker, R.L. Mc-Nutt Jr., The magnetic field of Mercury. Space Sci. Rev. 152, 307–339 (2010). https://doi.org/10.1007/s11214-009-9544-3
ADS
Article
Google Scholar
A.M. Archibald, N.V. Gusinskaia, J.W.T. Hessels, A.T. Deller, D.L. Kaplan, D.R. Lorimer, R.S. Lynch, S.M. Ransom, I.H. Stairs, Universality of free fall from the orbital motion of a pulsar in a stellar triple system. Nature 559, 73–76 (2018). https://doi.org/10.1038/s41586-018-0265-1
ADS
Article
Google Scholar
Balogh, A. (Coordinator), Mercury Orbiter, a mission proposal to ESA to be considered as a candidate for the M3 mission, 1993. ESA, Presentation of Assessment Study Results, European Space Agency, SC1 (94)9 (1994)
A. Balogh, in The BepiColombo Mission to Mercury a Brief History, EGU Annual Assembly, Vienna, April 2005 (2005),
Google Scholar
A. Balogh, R. Grard, G. Scoon, M. Hechler, A Mercury orbiter mission: report on the European Space Agency’s assessment study, in Abstracts of the 25th Lunar and Planetary Science Conference, 14–18 March 1994, Houston, TX (1994), p. 49
Google Scholar
A. Balogh, R. Grard, S.C. Solomon, R. Schulz, Y. Langevin, Y. Kasaba, M. Fujimoto, Missions to Mercury. Space Sci. Rev. 132, 611–645 (2007)
ADS
Google Scholar
W. Baumjohann, A. Matsuoka, Y. Narita, W. Magnes, D. Heyner, K.-H. Glassmeier, R. Nakamura, D. Fischer, F. Plaschke, M. Volwerk, T.L. Zhang, H.-U. Auster, I. Richter, A. Balogh, C. Carr, M. Dougherty, T.S. Horbury, H. Tsunakawa, M. Matsushima, M. Shinohara, H. Shibuya, T. Nakagawa, M. Hoshino, Y. Tanaka, B.J. Anderson, C.T. Russell, U. Motschmann, F. Takahashi, A. Fujimoto, The BepiColombo–Mio magnetometer en route to Mercury. Space Sci. Rev. 216 (2020), this journal. https://doi.org/10.1007/s11214-020-00745-z
J. Beerer, Historical account of return trajectory. Interoffice Memorandum, Beerer to Gordon, 16 July 1970. Jet Propulsion Laboratory, Pasadena (1970), 1 p.
J.W. Belcher, J.A. Slavin, T.P. Armstrong, R.W. Farquhar, S.-I. Akasofu, D.N. Baker, C.A. Cattell, A.F. Cheng, E.L. Chupp, P.E. Clark, M.E. Davies, E.W. Hones, W.S. Kurth, J.K. Maezawa, F. Mariani, E. Marsch, G.K. Parks, E.G. Shelley, G.L. Siscoe, E.J. Smith, R.G. Strom, J.I. Trombka, D.J. Williams, C.-W. Yen, Mercury Orbiter: report of the Science Working Team. Technical Memorandum 4255, NASA, Washington, D. C. (1991), p. 132
J. Benkhoff, J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, BepiColombo—Comprehensive Exploration of Mercury: Mission Overview and Science Goals (2010)
Google Scholar
W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988)
ADS
Google Scholar
D.T. Blewett (2018). https://doi.org/10.1017/9781316650684.013
D.T. Blewett et al., Hollows on Mercury: evidence for geologically recent volatile-related activity. Science 333, 1,856–1,859 (2011). https://doi.org/10.1126/science.1211681
Article
Google Scholar
D.T. Blewett, W.M. Vaughan, Z. Xiao, N.L. Chabot, B.W. Denevi, C.M. Ernst, J. Helbert, M. D’Amore, A. Maturilli, J.W. Head, S.C. Solomon, Mercury’s hollows: constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res., Planets 118(5), 1013–1032 (2013). https://doi.org/10.1029/2012JE004174
ADS
Article
Google Scholar
D.T. Blewett et al., Analysis of MESSENGER high-resolution images of Mercury’s hollows and implications for hollow formation. J. Geophys. Res., Planets 121, 1,798–1,813 (2016). https://doi.org/10.1002/2016JE005070
Article
Google Scholar
E.J. Bunce, A. Martindale, S. Lindsay, K. Muinonen, D.A. Rothery, J. Pearson, I. McDonnell, C. Thomas, J. Thornhill, T. Tikkanen, C. Feldman, J. Huovelin, S. Korpela, E. Esko, A. Lehtolainen, J. Treis, P. Majewski, M. Hilchenbach, T. Väisänen, A. Luttinen, T. Kohout, A. Penttilä, J. Bridges, K.H. Joy, M. Angeles Alcacera-Gil, G. Alibert, M. Anand, N. Bannister, C. Barcelo-Garcia, C. Bicknell, O. Blake, P. Bland, G. Butcher, A. Cheney, U. Christensen, T. Crawford, I. Crawford, K. Dennerl, M. Dougherty, P. Drumm, R. Fairbend, M. Genzer, M. Grande, G.P. Hall, R. Hodnett, P. Houghton, S. Imber, E. Kallio, M.L. Lara, A. Balado Margeli, J. Miguel Mas-Hesse, S. Maurice, S. Milan, P. Millington-Hotze, S. Nenonen, L. Nittler, T. Okada, J. Ormör, J. Perez-Mercader, R. Poyner, E. Robert, D. Ross, M. Pajas Sanz, E. Schyns, J. Seguy, L. Strüder, N. Vaudon, J. Viceira-Martín, H. Williams, D. Willingale, T. Yeoman, The BepiColombo Mercury Imaging X-ray Spectrometer: science goals, instrument performance and operations. Space Sci. Rev. 216(8), 1–38 (2020). https://doi.org/10.1007/s11214-020-00750-2
Article
Google Scholar
P.K. Byrne et al., Mercury’s global contraction much greater than earlier estimates. Nat. Geosci. 7, 301–307 (2014). https://doi.org/10.1038/ngeo2097
ADS
Article
Google Scholar
N.L. Chabot, C.M. Ernst, B.W. Denevi, H. Nair, A.N. Deutsch, D.T. Blewett, S.L. Murchie, A.N. Deutsch, J.W. Head, S.S. Solomon, Imaging Mercury’s polar deposits during MESSENGER’s low-altitude campaign. Geophys. Res. Lett. 43(18), 9461–9468 (2016)
ADS
Google Scholar
N.L. Chabot, E.E. Shread, J.K. Harmon, Investigating Mercury’s south polar deposits: Arecibo radar observations and high-resolution determination of illumination conditions. J. Geophys. Res., Planets 123, 666–681 (2018). https://doi.org/10.1002/2017JE005500
ADS
Article
Google Scholar
G. Colombo, Rotational period of the planet Mercury. Nature 208, 575 (1965). https://doi.org/10.1038/208575a0
ADS
Article
Google Scholar
G. Colombo, I.I. Shapiro, The rotation of the planet Mercury. Astrophys. J. 145, 295–307 (1966). https://doi.org/10.1086/148762
ADS
Article
Google Scholar
A. Coradini, F. Capaccioni, P. Drossart, A. Semery, G. Arnold, U. Schade, F. Angrilli, M.A. Barucci, G. Bellucci, G. Bianchini, J.P. Bibring, A. Blanco, M. Blecka, D. Bockelee-Morvan, R. Bonsignori, M. Bouye, E. Bussoletti, M.T. Capria, R. Carlson, U. Carsenty, P. Cerroni, L. Colangeli, M. Combes, M. Combi, J. Crovisier, M. Dami, M.C. DeSanctis, A.M. DiLellis, E. Dotto, T. Encrenaz, E. Epifani, S. Erard, S. Espinasse, A. Fave, C. Federico, U. Fink, S. Fonti, V. Formisano, Y. Hello, H. Hirsch, G. Huntzinger, R. Knoll, D. Kouach, W.H. Ip, P. Irwin, J. Kachlicki, Y. Langevin, G. Magni, T. McCord, V. Mennella, H. Michaelis, G. Mondello, S. Mottola, G. Neukum, V. Orofino, R. Orosei, P. Palumbo, G. Peter, B. Pforte, G. Piccioni, J.M. Reess, E. Ress, B. Saggin, B. Schmitt, D. Stefanovitch, A. Stern, F. Taylor, D. Tiphene, G. Tozzi, Virtis: an imaging spectrometer for the Rosetta mission. Planet. Space Sci. 46(9–10), 1291–1304 (1998). https://doi.org/10.1016/S0032-0633(98)00025-7
ADS
Article
Google Scholar
A.C.M. Correia, J. Laskar, Mercury’s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004)
ADS
Google Scholar
G. Cremonese, F. Capaccioni, M.T. Capria, A. Doressoundiram, P. Palumbo, M. Vincendon, M. Massironi, S. Debei, M. Zusi, F. Altieri, M. Amoroso, G. Aroldi, M. Baroni, A. Barucci, G. Bellucci, J. Benkhoff, S. Besse, C. Bettanini, M. Blecka, D. Borrelli, J.R. Brucato, C. Carli, P. Cerroni, A. Cicchetti, L. Colangeli, M. Dami, V. Da Deppo, V. Della Corte, M.C. De Sanctis, S. Erard, F. Esposito, D. Fantinel, L. Ferranti, F. Ferri, I. Ficai Veltroni, G. Filacchione, E. Flamini, G. Forlani, S. Fornasier, O. Forni, M. Fulchignoni, V. Galluzzi, K. Gwinner, W. Ip, L. Jorda, Y. Langevin, L. Lara, F. Leblanc, C. Leyrat, Y. Li, S. Marchi, L. Marinangeli, F. Marzari, E. Mazzotta Epifani, M. Mendillo, V. Mennella, R. Mugnuolo, K. Muinonen, G. Naletto, R. Noschese, E. Palomba, R. Paolinetti, D. Perna, G. Piccioni, R. Politi, F. Poulet, R. Ragazzoni, C. Re, M. Rossi, A. Rotundi, G. Salemi, M. Sgavetti, E. Simioni, N. Thomas, L. Tommasi, A. Turella, T. Van Hoolst, L. Wilson, F. Zambon, A. Aboudan, O. Barraud, N. Bott, P. Borin, G. Colombatti, M. El Yazidi, S. Ferrari, J. Flahault, L. Giacomini, L. Guzzetta, A. Lucchetti, E. Martellato, M. Pajola, A. Slemer, G. Tognon, D. Turrini, SIMBIO-SYS: cameras and spectrometer for the BepiColombo mission. Space Sci. Rev. 216(5), 1–78 (2020). https://doi.org/10.1007/s11214-020-00704-8
Article
Google Scholar
C. Damiani, J.-P. Rozelot, S. Lefebvre, A. Kilcik, A.G. Kosovichev, A brief history of the solar oblateness. A review. J. Atmos. Sol.-Terr. Phys. 73(2–3), 241–250 (2011). https://doi.org/10.1016/j.jastp.2010.02.021. hal-00519433 (2010)
ADS
Article
Google Scholar
F. De Marchi, G. Cascioli, Testing general relativity in the solar system: present and future perspectives. Class. Quantum Gravity 37, 095007 (2020). https://doi.org/10.1088/1361-6382/ab6ae0
ADS
MathSciNet
Article
Google Scholar
M.L. Delitsky, D.A. Paige, M.A. Siegler, E.R. Harju, D. Schriver, R.E. Johnson, P. Travnicek, Ices on Mercury: chemistry of volatiles in permanently cold areas of Mercury’s north polar region. Icarus 281, 19–31 (2017)
ADS
Google Scholar
G.A. Di Braccio, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, D.N. Baker, R.L. McNutt, S.C. Solomon, MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Phys. 118, 997–1008 (2013)
ADS
Google Scholar
I. Di Stefano, P. Cappuccio, L. Iess, The BepiColombo solar conjunction experiments revisited. Class. Quantum Gravity 38 (2021). https://doi.org/10.1088/1361-6382/abd301
D.L. Domingue, C.R. Chapman, R.M. Killen, T.H. Zurbuchen, J.A. Gilbert, M. Sarantos Mehdi Benna, J.A. Slavin, D. Schriver, P.M. Travnicek, T.M. Orlando, A.L. Sprague, D.T. Blewett, J.J. Gillis-Davis, W.C. Feldman, D.J. Lawrence, G.C. Ho Denton, S. Ebel, L.R. Nittler, F. Vilas Carle, M. Pieters, S.C. Solomon, C.L. Johnson, R.M. Winslow, J. Helbert, P.N. Peplowski, S.Z. Weider, N. Mouawad, N.R. Izenberg, W.E. McClintock, Mercury’s weather-beaten surface: understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev. 181, 121–214 (2014). https://doi.org/10.1007/s11214-014-0039-5
ADS
Article
Google Scholar
A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 354, 769–822 (1916)
MATH
Google Scholar
C. Ernst et al., Mercury Lander - Transformative science from the surface of the innermost planet, Planetary mission concept study for the 2023–2032 decadal survey (2020). https://science.nasa.gov/science-red/s3fs-public/atoms/files/Mercury
A. Ferrero, D. Battaglia, T. Malosti, D. Stramaccioni, J. Schilke, The challenges of the thermal design of BepiColombo Mercury planet orbiter, in 46th International Conference on Environmental Systems, ICES-2016-212, Vienna, Austria (2016)
Google Scholar
B.H. Foing, G.D. Racca, A. Marini, E. Evrard, L. Stagnaro, M. Almeida, D. Koschny, D. Frew, J. Zender, J. Heather, M. Grande, J. Huovelin, H.U. Keller, A. Nathues, J.L. Josset, A. Malkki, W. Schmidt, G. Noci, R. Birkl, L. Iess, Z. Sodnik, P. McManamon, SMART-1 mission to the Moon: status, first results and goals. Adv. Space Res. 37(1), 6–13 (2006). https://doi.org/10.1016/j.asr.2005.12.016
ADS
Article
Google Scholar
N.J. Fox, M.C. Velli, S.D. Bale, R. Decker, A. Driesman, R.A. Howard, J.C. Kasper, J. Kinnison, M. Kusterer, D. Lario, M.K. Lockwood, D.J. McComas, N.E. Raouafi, A. Szabo, The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204(1–4), 7–48 (2016). https://doi.org/10.1007/s11214-015-0211-6
ADS
Article
Google Scholar
A. Genova et al., Geodetic evidence that Mercury has a solid inner core. Geophys. Res. Lett. 46(7), 3625–3633 (2019). https://doi.org/10.1029/2018gl081135
ADS
Article
Google Scholar
A. Genova, H. Hussmann, T. Van Hoolst, D. Heyner, L. Iess, F. Santoli, N. Thomas, P. Cappuccio, I. di Stefano, P. Kolhey, B. Langlais, J.Z.D. Mieth, J.S. Oliveira, A. Stark, G. Steinbrügge, N. Tosi, J. Wicht, J. Benkhoff, Geodesy, geophysics and fundamental physics investigations of the BepiColombo mission. Space Sci. Rev. 217, 31 (2021). https://doi.org/10.1007/s11214-021-00808-9
ADS
Article
Google Scholar
R. Grard, The Mercury Orbiter mission. Adv. Space Res. 19(IO), 1621–1624 (1997)
ADS
Google Scholar
R. Grard, A. Balogh, Returns to Mercury: science and mission objectives. Planet. Space Sci. 49, 1395–1407 (2001)
ADS
Google Scholar
H. Gray, J. Bolter, K. Kempkens, P. Randall, N. Wallace, BepiColombo – the Mercury transfer module, in The 36th International Electric Propulsion Conference, University of Vienna, Austria, September 15-20 (2019)
Google Scholar
E. Grün, H. Fechtig, P. Gammelin, J. Kissel, The dust experiment onboard Helios (E 10) [Das Staubexperiment auf HELIOS (E10)]. Raumfahrtforschung 19, 268–269 (1975)
ADS
Google Scholar
J.K. Harmon, M.A. Slade, Radar mapping of Mercury: full-disk images and polar anomalies. Science 258, 640–643 (1992)
ADS
Google Scholar
J.K. Harmon, M.A. Slade, R.A. Vélez, A. Crespo, M.J. Dryer, J.M. Johnson, Radar mapping of Mercury’s polar anomalies. Nature 369, 213–215 (1994)
ADS
Google Scholar
S.A. Hauck II, D.A. Eng, A. Treiman, G. Tahu, K. Lindstrom, D. Blewett, H. Seifert, K. Stambaugh, G. Chavers, S. Oleson, M. Mcguire, Y. Guo, J. Dankanich, C. Dong, L. Burke, H.M. LarryWolfarth, J. Drexler, M. Holdridge, J. Cockrell, T. Miller, H. Trinh, J. Fittje, T. Verhey, J. Gyekenyesi, J. Ercol, E. Abel, T. Colozza, B. Sequeira, J. Warner, M. Fraeman, G. Williams, P. Schmitz, E. Lowery, G. Landis, J. Hojniki, D. Adams, M. Martini, S. Williams, J. Drexler, Mercury Lander Mission Concept Study (The Johns Hopkins University Applied Physics Laboratory, Laurel, 2010). 132 pp.
Google Scholar
J.W. Head, S.L. Murchie, L.M. Prockter, M.S. Robinson, S.C. Solomon, R.G. Strom, C.R. Chapman, T.R. Watters, W.E. McClintock, D.T. Blewett, J.J. Gillis-Davis, Volcanism on Mercury: evidence from the first MESSENGER flyby. Science 321, 69–72 (2008)
ADS
Google Scholar
D. Heyner et al., The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter. Space Sci. Rev. 217(4) (2021). https://doi.org/10.1007/s11214-021-00822-x
H. Hiesinger, J. Helbert, G. Alemano, K.E. Bauch, M. D’Amore, A. Maturilli, A. Morlok, M.P. Reitze, C. Stangarone, A.N. Stojic, I. Varatharajan, I. Weber (the MERTIS Co-I Team), Correction to: Studying the composition and mineralogy of the hermean surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission: an update. Space Sci. Rev. 216(8), 1 (2020). https://doi.org/10.1007/s11214-020-00780-w
Article
Google Scholar
J. Huovelin, R. Vainio, E. Kilpua, A. Lehtolainen, S. Korpela, E. Esko, K. Muinonen, E. Bunce, A. Martindale, M. Grande, H. Andersson, S. Nenonen, J. Lehti, W. Schmidt, M. Genzer, T. Vihavainen, J. Saari, J. Peltonen, E. Valtonen, M. Talvioja, P. Portin, S. Narendranath, R. Jarvinen, T. Okada, A. Milillo, M. Laurenza, E. Heino, P. Oleynik, Solar intensity X-ray and particle spectrometer SIXS: instrument design and first results. Space Sci. Rev. 216(5), 1–42 (2020). https://doi.org/10.1007/s11214-020-00717-3
Article
Google Scholar
K. Hurley et al., The InterPlanetary network supplement to the second Fermi GBM catalog of cosmic gamma-ray bursts. Astrophys. J. Suppl. Ser. 229(2), 31 (2017)
ADS
Google Scholar
L. Iess, S.W. Asmar, P. Cappuccio, G. Cascioli, F. De Marchi, I. di Stefano, A. Genova, N. Ashby, J.P. Barriot, P. Bender, C. Benedetto, J.S. Border, F. Budnik, S. Ciarcia, T. Damour, V. Dehant, G. Di Achille, A. Di Ruscio, A. Fienga, R. Formaro, S. Klioner, A. Konopliv, A. Lemaître, F. Longo, M. Mercolino, G. Mitri, V. Notaro, A. Olivieri, M. Paik, A. Palli, G. Schettino, D. Serra, L. Simone, G. Tommei, P. Tortora, T. Van Hoolst, D. Vokrouhlický, M. Watkins, X. Wu, M. Zannoni, Gravity, geodesy and fundamental physics with BepiColombo’s MORE investigation. Space Sci. Rev. 217, 21 (2021). https://doi.org/10.1007/s11214-021-00800-3
ADS
Article
Google Scholar
L. Imperi, L. Iess, The determination of the post-Newtonian parameter \(\gamma \) during the cruise phase of BepiColombo. Class. Quantum Gravity 34(7), 075002 (2017)
ADS
Google Scholar
N.R. Izenberg, R.L. Klima, S.L. Murchie, D.T. Blewett, G.M. Holsclaw, W.E. McClintock, E. Malaret, C. Mauceri, F. Vilas, A.L. Sprague, J. Helbert, D.L. Domingue, J.W. Head III, T.A. Goudge, S.C. Solomon, C.A. Hibbitts, M. Darby Dyar, The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus 228, 364–374 (2014)
ADS
Google Scholar
R. Jehn, S. Campagnola, D. Garcia, S. Kemble, Low-thrust approach and gravitational capture at Mercury, in 18th Int. Symposium on Space Flight Dynamics, Munich, Germany, 11–15 October (2004)
Google Scholar
X. Jia, J.A. Slavin, T.I. Gombosi, L.K.S. Daldorff, G. Toth, B. Holst, Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. Space Phys. 120, 4763–4775 (2015)
ADS
Google Scholar
T. Karlsson, Y. Kasaba, J.-E. Wahlund, P. Henri, L. Bylander, W. Puccio, S.-E. Jansson, L. Åhlen, E. Kallio, H. Kojima, A. Kumamoto, K. Lappalainen, B. Lybekk, K. Ishisaka, A. Eriksson, M. Morooka, The MEFISTO and WPT electric field sensors of the Plasma Wave Investigation on the BepiColombo Mio spacecraft - measurements of low and high frequency electric fields at Mercury. Space Sci. Rev. 216(8), 1–24 (2020). https://doi.org/10.1007/s11214-020-00760-0
Article
Google Scholar
Y. Kasaba, H. Kojima, M. Moncuquet, J.-E. Wahlund, S. Yagitani, F. Sahraoui, P. Henri, T. Karlsson, Y. Kasahara, A. Kumamoto, K. Ishisaka, K. Issautier, G. Wattieaux, T. Imachi, S. Matsuda, J. Lichtenberger, H. Usui, Plasma Wave Investigation (PWI) aboard BepiColombo Mio on the trip to the first measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Space Sci. Rev. 216(4), 1–54 (2020a). https://doi.org/10.1007/s11214-020-00692-9
Article
Google Scholar
Y. Kasaba, T. Takashima, S. Matsuda, S. Eguchi, M. Endo, T. Miyabara, M. Taeda, Y. Kuroda, Y. Kasahara, T. Imachi, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, A. Kumamoto, A. Matsuoka, W. Baumjohann, S. Yokota, K. Asamura, Y. Saito, D. Delcourt, M. Hirahara, S. Barabash, N. Andre, M. Kobayashi, I. Yoshikawa, G. Murakami, H. Hayakawa, Mission data processor aboard the BepiColombo Mio spacecraft: design and scientific operation concept. Space Sci. Rev. 216(3), 1–19 (2020b). https://doi.org/10.1007/s11214-020-00658-x
Article
Google Scholar
K. Kempkens, F. Striedter, H. Gray, S. Clark, K. Chan, N. Wallace, BepiColombo – the Mercury transfer module, in The 36th International Electric Propulsion Conference, University of Vienna, Austria September 15-20 (2019)
Google Scholar
R.M. Killen, J.M. Hahn, Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus 250, 230–237 (2015)
ADS
Google Scholar
R.M. Killen, J. Benkhoff, T.H. Morgan, Mercury’s polar caps and the generation of an OH exosphere. Icarus 125, 195–211 (1997)
ADS
Google Scholar
R.M. Killen, G. Cremonese, H. Lammer, S. Orsini, A.E. Potter, A.L. Sprague, P. Wurz, M.L. Khodachenko, H.I.M. Lichtenegger, A. Milillo, A.R. Mura, Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev. 132, 433–509 (2007)
ADS
Google Scholar
M. Kobayashi, K. Nogami, M. Fujii, H. Ohashi, T. Miyachi, S. Sasaki, S. Hasegawa, H. Yano, H. Shibata, T. Iwai, S. Minami, S. Takechi, E. Grun, R. Srama, Development of the Mercury Dust Monitor (MDM) on board BepiColombo mission. Space Sci. Rev. 216, 144K (2020). https://doi.org/10.1007/s11214-020-00775-7
A.S. Kozyrev et al., Selection of new innovation crystal for Mercury Gamma-ray and Neutron Spectrometer on-board MPO/BepiColombo mission, in EGU General Assembly 2015, 12-17 April, 2015, Vienna, Austria (2015), id. 6848
Google Scholar
A. Kozyrev, I. Mitrofanov, J. Benkhoff et al., Next generation of scintillation detector based on cerium bromide crystal for space application in the gamma-ray spectrometer of the Mercurian Gamma-ray and Neutron Spectrometer. Instrum. Exp. Tech. 59(4), 569–577 (2016a)
Google Scholar
A. Kozyrev et al., A comparative study of gamma-ray spectrometers with LaBr3(Ce3+) and CeBr3 scintillation crystals for planetary remote sensing applications, in EGU General Assembly 2016, Vienna, Austria, 17–22 April, 2016 (2016b), id. EPSC2016-16261
Google Scholar
A. Kozyrev, A. Anikin, A. Vostrukhin, et al., Simulation of space experiments for nuclear planetology: measurement of relative intensities of lines of gamma-ray emitted upon thermal-neutron capture by nuclei. Phys. At. Nucl. 81(5), 527–539 (2018)
Google Scholar
H. Krüger, E. Grünn, D.P. Hamilton, M. Baguhl, S.F. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDon-nell, G.E. Morfill, C. Polanskey, R. Riemann, G.H. Schwehm, R. Srama, H.A. Zook, Three years of Galileo dust data: II. 1993 to 1995. Planet. Space Sci. 47, 85–106 (1999)
ADS
Google Scholar
H. Krüger, A.V. Krivov, E. Grün, A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457–1471 (2000)
ADS
Google Scholar
Y. Langevin, Chemical and solar electric propulsion options for a cornerstone mission to Mercury. Acta Astronaut. 47, 443–452 (2000). https://doi.org/10.1016/S0094-5765(00)00084-9
ADS
Article
Google Scholar
D. Lawrence, A tale of two poles: toward understanding the presence, distribution, and origin of volatiles at the polar regions of the Moon and Mercury. J. Geophys. Res., Planets 122(1), 21–52 (2017). https://doi.org/10.1002/2016JE005167
ADS
Article
Google Scholar
R.A. Lewis, J. Pérez Luna, N. Coombs, F. Guarducci, Qualification of the T6 thruster for BepiColombo, in Joint Conference of the 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference, and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan (2015), 10 pp.
Google Scholar
S.T. Lindsay, M.K. James, E.J. Bunce, S.M. Imber, H. Korth, A. Martindale, T.K. Yeoman, Planet. Space Sci. 125, 72–79 (2016)
ADS
Google Scholar
V. Mangano, M. Dósa, M. Fränz, A. Milillo, J.S. Oliveira, Y.J.Lee, S. McKenna-Lawlor, D. Grassi, D. Heyner, A.S. Kozyrev, R. Peron, J. Helbert, S. Besse, S. de la Fuente, E. Montagnon, J. Zender, M. Volwerk, J.-Y. Chaufray, J.A. Slavin, H.M.A. Krüger, T. Cornet, K. Iwai, Y. Miyoshi, M. Lucente, S. Massetti, C.A. Schmidt, C. Dong, F. Quarati, T. Hirai, A. Varsani, D. Belyaev, J. Zhong, E.K.J. Kilpua, B.V. Jackson, D. Odstrcil, F. Plaschke, R. Vainio, R. Jarvinen, S.L. Ivanovski, Á. Madár, G. Erdős, C. Plainaki, T. Alberti, S. Aizawa, J. Benkhoff, G. Murakami, E. Quemerais, H. Hiesinger, I.G. Mitrofanov, L. Iess, F. Santoli, S. Orsini, H. Lichtenegger, G. Laky, S. Barabash, R. Moissl, J. Huovelin, Y. Kasaba, Y. Saito, M. Kobayashi, W. Baumjohann, BepiColombo science investigations during cruise and flybys at the Earth, Venus and Mercury. Space Sci. Rev. 217, 23 (2021). https://doi.org/10.1007/s11214-021-00797-9
ADS
Article
Google Scholar
S. Marchi et al., Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013). https://doi.org/10.1038/nature12280
ADS
Article
Google Scholar
J.-L. Margot, S.A. Hauck II, E. Mazarico, S. Padovan, S.J. Peale, Mercury’s internal structure, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson. Cambridge Planetary Science (2018), pp. 85–113
Google Scholar
R.L. McNutt Jr., S.C. Solomon, R.E. Gold, J.C. Leary (the MESSENGER Team), The MESSENGER mission to Mercury: development history and early mission status. Adv. Space Res. 38, 564–571 (2006). https://doi.org/10.1016/j.asr.2005.05.044
ADS
Article
Google Scholar
R.L. McNutt, S.C. Solomon, R. Grard, M. Novara, T. Mukai, An international program for Mercury exploration: synergy of MESSENGER and BepiColombo. Adv. Space Res. 33, 2126–2132 (2004)
ADS
Google Scholar
R.L. McNutt, J. Benkhoff, M. Fujimoto, B.J. Anderson, Future missions: Mercury after MESSENGER, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson. Cambridge Planetary Science (2018), pp. 544–569
Google Scholar
A. Milillo, M. Fujimoto, G. Murakami, J. Benkhoff, J. Zender, S. Aizawa, M. Dósa, L. Griton, D. Heyner, G. Ho, S.M. Imber, X. Jia, T. Karlsson, R.M. Killen, M. Laurenza, S.T. Lindsay, S. McKenna-Lawlor, A. Mura, J.M. Raines, D.A. Rothery, N. André, W. Baumjohann, A. Berezhnoy, P.A. Bourdin, E.J. Bunce, F. Califano, J. Deca, S. de la Fuente, C. Dong, C. Grava, S. Fatemi, P. Henri, S.L. Ivanovski, B.V. Jackson, M. James, E. Kallio, Y. Kasaba, E. Kilpua, M. Kobayashi, B. Langlais, F. Leblanc, C. Lhotka, V. Mangano, A. Martindale, S. Massetti, A. Masters, M. Morooka, Y. Narita, J.S. Oliveira, D. Odstrcil, S. Orsini, M.G. Pelizzo, C. Plainaki, F. Plaschke, F. Sahraoui, K. Seki, J.A. Slavin, R. Vainio, P. Wurz, S. Barabash, C.M. Carr, D. Delcourt, K.-H. Glassmeier, M.N. Grande, M. Hirahara, J. Huovelin, O. Korablev, H. Kojima, H. Lichtenegger, S. Livi, A. Matsuoka, R. Moissl, M. Moncuquet, K. Muinonen, E. Quémerais, Y. Saito, S. Yagitani, I. Yoshikawa, J.-E. Wahlund, Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Sci. Rev. 216(5), 1–78 (2020). https://doi.org/10.1007/s11214-020-00712-8
Article
Google Scholar
I.G. Mitrofanov, A.S. Kozyrev, A. Konovalov, M.L. Litvak, A.A. Malakhov, M.I. Mokrousov, A.B. Sanin, V.I. Tret’ykov, A.V. Vostrukhin, Y.I. Bobrovnitskij, T.M. Tomilina, L. Gurvits, A. Owens, The Mercury Gamma and Neutron Spectrometer (MGNS) on board the Planetary Orbiter of the BepiColombo mission. Planet. Space Sci. 58, 116–124 (2010). https://doi.org/10.1016/j.pss.2009.01.005
ADS
Article
Google Scholar
I.G. Mitrofanov, A.S. Kozyrev, D.I. Lisov, M.L. Litvak, A.A. Malakhov, M.I. Mokrousov, J. Benkhoff, A. Owens, R. Schulz, F. Quarati, Mercury Gamma-ray and Neutron Spectrometer MGNS for Planetary Orbiter of BepiColombo mission: updates of design and the first measurements in space. Space Sci. Rev. 217 (2021). https://doi.org/10.1007/s11214-021-00842-7
E. Montagnon, F. Budnik, M. Casale, S. de la Fuente, S. Martinez, G. Murakami, M. Ogawa, T. Seki, C. Steiger, M. Yamashita, BepiColombo ground segment and mission operations. Space Sci. Rev. 217, 32 (2021). https://doi.org/10.1007/s11214-021-00805-y
ADS
Article
Google Scholar
D. Müller, R.G. Marsden, O.C. St. Cyr, H.R. Gilbert, Solar orbiter. Exploring the Sun-heliosphere connection. Sol. Phys. 285(1–2), 25–70 (2013). https://doi.org/10.1007/s11207-012-0085-7
ADS
Article
Google Scholar
G. Murakami, H. Hayakawa, H. Ogawa, S. Matsuda, T. Seki, Y. Kasaba, Y. Saito, I. Yoshikawa, M. Kobayashi, W. Baumjohann, A. Matsuoka, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, D. Delcourt, M. Hirahara, S. Barabash, O. Korablev, M. Fujimoto, Mio - first comprehensive exploration of Mercury’s space environment: mission overview. Space Sci. Rev. 216, 113M (2020). https://doi.org/10.1007/s11214-020-00733-3
M. Nakamura, T. Imamura, N. Ishii, T. Abe, T. Satoh, M. Suzuki, M. Ueno, A. Yamazaki, N. Iwagami, S. Watanabe, M. Taguchi, T. Fukuhara, Y. Takahashi, M. Yamada, N. Hoshino, S. Ohtsuki, K. Uemizu, G.L. Hashimoto, M. Takagi, Y. Matsuda, K. Ogohara, N. Sato, Y. Kasaba, T. Kouyama, N. Hirata, R. Nakamura, Y. Yamamoto, N. Okada, T. Horinouchi, M. Yamamoto, Y. Hayashi, Overview of Venus orbiter, Akatsuki. Earth Planets Space 63, 443–457 (2011)
ADS
Google Scholar
R.M. Nelson, L.J. Horn, J.R. Weiss, W.D. Smythe, Lunar Planet. Sci. 25, 985–986 (1994)
ADS
Google Scholar
R.M. Nelson et al., Acta Astron., Suppl. 35, 387–396 (2005)
ADS
Google Scholar
L.R. Nittler, N.L. Chabot, T.L. Grove, P.N. Peplowski, The chemical composition of Mercury, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson Cambridge Planetary Science (2018), pp. 30–51
Google Scholar
M. Novara, The BepiColombo ESA cornerstone mission to Mercury. Acta Astronaut. 51, 387–395 (2002). https://doi.org/10.1016/S0094-5765(02)00065-6
ADS
Article
Google Scholar
H. Ogawa, T. Yamazaki, A. Okamoto, BepiColombo Mercury magnetospheric orbiter proto-flight model thermal balance/thermal vacuum test, in 45th International Conference on Environmental Systems, Bellevue, Washington, 12–16 July 2015 (2015)
Google Scholar
S. Orsini, S. Livi, H. Lichtenegger, S. Barabash, A. Milillo, E. De Angelis, M. Phillips, G. Laky, M. Wieser, A. Olivieri, C. Plainaki, G. Ho, R.M. Killen, J.A. Slavin, P. Wurz, J.-J. Berthelier, I. Dandouras, E. Kallio, S. McKenna-Lawlor, S. Szalai, K. Torkar, O. Vaisberg, F. Allegrini, I.A. Daglis, C. Dong, C.P. Escoubet, S. Fatemi, M. Fränz, S. Ivanovski, N. Krupp, H. Lammer, F. Leblanc, V. Mangano, A. Mura, H. Nilsson, J.M. Raines, R. Rispoli, M. Sarantos, H.T. Smith, K. Szego, A. Aronica, F. Camozzi, A.M. Di Lellis, G. Fremuth, F. Giner, R. Gurnee, J. Hayes, H. Jeszenszky, F. Tominetti, B. Trantham, J. Balaz, W. Baumjohann, D. Brienza, U. Bührke, M.-D. Bush, M. Cantatore, S. Cibella, L. Colasanti, G. Cremonese, L. Cremonesi, M. D’Alessandro, D. Delcourt, M. Delva, M. Desai, M. Fama, M. Ferris, H. Fischer, A. Gaggero, D. Gamborino, P. Garnier, B. Gibson, R. Goldstein, M. Grande, V. Grishin, D. Haggerty, M. Holmström, I. Horvath, K.C. Hsieh, A. Jacques, R.E. Johnson, A. Kazakov, K. Kecskemety, H. Krüger, C. Kürbisch, F. Lazzarotto, F. Leblanc, M. Leichtfried, R. Leoni, A. Loose, D. Maschietti, S. Massetti, F. Mattioli, G. Miller, D. Moissenko, A. Morbidini, R. Noschese, F. Nuccilli, C. Nunez, N. Paschalidis, S. Persyn, D. Piazza, M. Oja, J. Ryno, W. Schmidt, J.A. Scheer, A. Shestakov, S.S. Shuvalov, K. Seki, S. Selci, K. Smith, R. Sordini, J. Svensson, L. Szalai, D. Toublanc, C. Urdiales, A. Varsani, N. Vertolli, R. Wallner, P. Wahlstroem, P. Wilson, S. Zampieri SERENA: particle instrument suite for Sun-Mercury interaction insights on-board BepiColombo. Space Sci. Rev. 217, 30O (2021). https://doi.org/10.1007/s11214-021-00809-8
P.N. Peplowski et al., Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus 253, 346–363 (2015). https://doi.org/10.1016/j.icarus.2015.02.002
ADS
Article
Google Scholar
P.N. Peplowski, R.L. Klima, D.J. Lawrence, C.M. Ernst, B.W. Denevi, E.A. Frank, J.O. Goldsten, S.L. Murchie, L.R. Nittler, S.C. Solomon, Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 9, 273–276 (2016)
ADS
Google Scholar
E. Quémerais, J.-Y. Chaufray, D. Koutroumpa, F. Leblanc, A. Reberac, B. Lustrement, C. Montaron, J.-F. Mariscal, N. Rouanet, I. Yoshikawa, G. Murakami, K. Yoshioka, O. Korablev, D. Belyaev, M.G. Pelizzo, A.J. Corso, P. Zuppella, PHEBUS on Bepi-Colombo: post-launch update and instrument performance. Space Sci. Rev. 216(4), 1–23 (2020). https://doi.org/10.1007/s11214-020-00695-6
Article
Google Scholar
G. Racca, Mercury orbiter mission with solar electric propulsion, ESA/PF/1440.97/GR (1997)
J.M. Raines, G.A. DiBraccio, T.A. Cassidy, D.C. Delcourt, M. Fujimoto, X. Jia, V. Mangano, A. Milillo, M. Sarantos, J.A. Slavin, P. Wurz, Plasma sources in planetary magnetospheres: Mercury. Space Sci. Rev. 192, 91–144 (2015)
ADS
Google Scholar
D.A. Rothery, M. Massironi, G. Alemanno, O. Barraud, S. Besse, N. Bott, R. Brunetto, E. Bunce, P. Byrne, F. Capaccioni, M.T. Capria, C. Carli, B. Charlier, T. Cornet, G. Cremonese, M. D’Amore, M.C. De Sanctis, A. Doressoundiram, L. Ferranti, G. Filacchione, V. Galluzzi, L. Giacomini, M. Grande, L.G. Guzzetta, J. Helbert, D. Heyner, H. Hiesinger, R. Hyodo, T. Kohout, A. Lucchetti, C. Malliband, P. Mancinelli, J. Martikainen, A. Martindale, A. Maturilli, A. Milillo, A. Morlok, K. Muinonen, O. Namur, L.R. Nittler, J.S. Oliveira, P. Palumbo, M. Pajola, D. Pegg, A. Penttilä, R. Politi, C. Re, C. Stangarone, A. Stojic, T. Väisänen, I. Varatharajan, I. Weber, J. Wright, P. Wurz, F. Zambon, Rationale for BepiColombo studies of Mercury’s surface and composition. Space Sci. Rev. 216(4), 1–46 (2020). https://doi.org/10.1007/s11214-020-00694-7
Article
Google Scholar
Y. Saito, J.A. Sauvaud, M. Hirahara, S. Barabash, D. Delcourt, T. Takashima, K. Asamura (the BepiColombo MMO/MPPE Team), Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO. Space Sci. Rev. 217(5) (2021). https://doi.org/10.1007/s11214-021-00839-2
F. Santoli, E. Fiorenza, C. Lefevre, D.M. Lucchesi, M. Lucente, C. Magnafico, A. Morbidini, R. Peron, V. Iafolla, ISA, a high sensitivity accelerometer in the interplanetary space. Updates after the near-Earth commissioning phase of Italian Spring Accelerometer/ISA. Space Sci. Rev. 216, 145 (2020). https://doi.org/10.1007/s11214-020-00768-6
ADS
Article
Google Scholar
D.L. Shirley, The Mariner 10 mission to Venus and Mercury. Acta Astronaut. 53(4–10), 375–385 (2003). https://doi.org/10.1016/S0094-5765(03)00155-3
ADS
Article
Google Scholar
J.A. Slavin, R.E. Holzer, Solar wind flow about the terrestrial planets, 1. Modeling bow shock position and shape. J. Geophys. Res. 86(A13), 11401–11418 (1981). https://doi.org/10.1029/JA086iA13p11401
ADS
Article
Google Scholar
J.A. Slavin, G.A. Di Braccio, D.J. Gershman, S.M. Imber, G.K. Poh, J.M. Raines, T.H. Zurbuchen, X. Jia, D.N. Baker, K.-H. Glassmeier, S.A. Livi, S.A. Boardsen, T.A. Cassidy, M. Sarantos, T. Sundberg, A. Masters, C.L. Johnson, R.M. Winslow, B.J. Anderson, H. Korth, R.L. McNutt, S.C. Solomon, MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Phys. 119, 8087–8116 (2014)
ADS
Google Scholar
J.A. Slavin, D.N. Baker, D.J. Gershman, G.C. Ho, S.M. Imber, S.M. Krimigis, T. Sundberg, Mercury’s dynamic magnetosphere, in Mercury the View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2018). Chap. 17
Google Scholar
R. Soja, M. Sommer, R. Srama, P. Strub, E. Grün, J. Rodmann, J. Vaubaillon, A. Hornig, L. Bausch, The Interplanetary Meteoroid Environment for eXploration, in Asteroids, Comets, Meteors 2014. Proceedings of the Conference, Helsinki, Finland, 30 June - 4 July, 2014 (2014)
Google Scholar
S.C. Solomon, B.J. Anderson, The MESSENGER mission: science and implementation overview, in Mercury—The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2018), pp. 1–29
Google Scholar
S.C. Solomon, R.L. McNutt, R.E. Gold, M.H. Acuna, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001)
ADS
Google Scholar
S.C. Solomon, R.L. McNutt Jr., R.E. Gold, D.L. Domingue, MESSENGER mission overview. Space Sci. Rev. 131, 3–39 (2007). https://doi.org/10.1007/s11214-007-9247-6
ADS
Article
Google Scholar
S.C. Solomon, L.R. Nittler, B.J. Anderson (eds.), Mercury—The View After MESSENGER (Cambridge University Press, Cambridge, 2018). https://doi.org/10.1017/9781316650684 581 p.
Book
Google Scholar
R.G. Strom, A.L. Sprague, Exploring Mercury: The Iron Planet (Springer, New York, 2003). ISBN 1852337311
Google Scholar
O. Sutherland, D. Stramaccioni, J. Benkhoff, N. Wallace, A. Rocchi, R. Jehn, BepiColombo: ESA’s Interplanetary Electric Propulsion mission to Mercury, in The 36th International Electric Propulsion Conference, University of Vienna, Austria, September 15–20 (2019)
Google Scholar
N. Thomas, H. Hussmann, T. Spohn, L.M. Lara, U. Christensen, M. Affolter, T. Bandy, T. Beck, S. Chakraborty, U. Geissbuehler, M. Gerber, K. Ghose, J. Gouman, S. HosseiniArani, K. Kuske, A. Peteut, D. Piazza, M. Rieder, A. Servonet, C. Althaus, T. Behnke, K. Gwinner, C. Hüttig, R. Kallenbach, A. Lichopoj, K. Lingenauber, H.-G. Lötzke, F. Lüdicke, H. Michaelis, J. Oberst, R. Schrödter, A. Stark, G. Steinbrügge, S. del Togno, K. Wickhusen, J.M. Castro, M. Herranz, J. Rodrigo, H. Perplies, T. Weigel, S. Schulze-Walewski, S. Blum, A. Casciello, E. Rugi-Grond, W. Coppoolse, M. Rech, K. Weidlich, T. Leikert, R. Henkelmann, B. Trefzger, B. Metz, The BepiColombo Laser Altimeter. Space Sci. Rev. 217, 25 (2021). https://doi.org/10.1007/s11214-021-00794-y
ADS
Article
Google Scholar
S. Tuttle, G. Cavallo, Thermal design of the Mercury transfer module, in 39th International Conference on Environmental Systems, Savannah, Georgia (2009)
Google Scholar
R. van Grieken, A. Markowicz, Handbook of X-Ray Spectrometry: Methods and Techniques (Dekker, New York, 1993)
Google Scholar
K.E. Vander Kaaden et al., Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the Mercurian surface: insights into the Mercurian mantle. Icarus 285, 155–168 (2017). https://doi.org/10.1016/j.icarus.2016.11.041
ADS
Article
Google Scholar
G. Voisin, I. Cognard, P.C.C. Freire, N. Wex, L. Guillemot, G. Desvignes, M. Kramer, G. Theureau, An improved test of the strong equivalence principle with the pulsar in a triple star system. Astron. Astrophys. 638, A24 (2020). https://doi.org/10.1051/0004-6361/202038104
ADS
Article
Google Scholar
W.R. Ward, G. Colombo, F.A. Franklin, Secular resonance, solar spin down, and the orbit of Mercury. Icarus 28, 441–452 (1976). https://doi.org/10.1016/0019-1035(76)90117-2
ADS
Article
Google Scholar
S.Z. Weider et al., Evidence for geochemical terranes on Mercury: global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett. 416, 109–120 (2015). https://doi.org/10.1016/j.epsl.2015.01.023
ADS
Article
Google Scholar
S. Yagitani, M. Ozaki, F. Sahraoui, L. Mirioni, M. Mansour, G. Chanteurb, C. Coillot, S. Ruocco, V. Leray, M. Hikishima, D. Alison, O. Le Contel, H. Kojima, Y. Kasahara, Y. Kasaba, T. Sasaki, T. Yumoto, Y. Takeuchi, Measurements of magnetic field fluctuations for Plasma Wave Investigation by the search coil magnetometers (SCM) onboard Bepicolombo Mio (Mercury Magnetospheric Orbiter). Space Sci. Rev. 216(7), 1–26 (2020). https://doi.org/10.1007/s11214-020-00734-2
Article
Google Scholar
H. Yamakawa, J. Kawagushi, K. Uesugi, H. Matsuo, Frequent access to Mercury in the early 21st century: multiple Mercury flyby mission via electric propulsion. Acta Astronaut. 39, 133–142 (1996). https://doi.org/10.1016/S0094-5765(96)00130-0
ADS
Article
Google Scholar
H. Yamakawa, H. Saito, J. Kawagushi, Y. Kobayashi, H. Hayakawa, T. Mukai, Preliminary ISAS Mercury orbiter mission design. Acta Astronaut. 45, 187–195 (1999). https://doi.org/10.1016/S0094-5765(99)00136-8
ADS
Article
Google Scholar
H. Yamakawa, H. Ogawa, Y. Sone, H. Hayakawa, Y. Kasaba, T. Takashima, T. Mukai, BepiColombo Mercury magnetospheric orbiter design, IAC-05-A3.2.B.06, in 56th International Astronautical Congress (IAC), Fukuoka, October 2005 (2005a)
Google Scholar
H. Yamakawa, H. Ogawa, Y. Sone, H. Hayakawa, Y. Kasaba, T. Takashima, T. Mukai, BepiColombo Mercury magnetospheric orbiter, in IAA International Conference on Low-Cost Planetary Missions (ICLCPM) Kyoto, 11-13 October (2005b)
Google Scholar
C.W. Yen, in Proc. American Aeronautical Society/American Institute of Aeronautics and Astronautics (AAS/AIAA) Astrodynamics Specialist Conference, San Diego, CA (1985). Paper AIAA No. 85-345
Google Scholar
C.W. Yen, J. Astronaut. Sci. 37, 417–432 (1989)
ADS
Google Scholar
I. Yoshikawa et al. (2010). https://doi.org/10.1016/j.pss.2008.07.008