Advertisement

Space Science Reviews

, 215:10 | Cite as

Geologic Constraints on Early Mars Climate

  • Edwin S. KiteEmail author
Article

Abstract

Early Mars climate research has well-defined goals (MEPAG 2018). Achieving these goals requires geologists and climate modelers to coordinate. Coordination is easier if results are expressed in terms of well-defined parameters. Key parameters include the following quantitative geologic constraints. (1) Cumulative post-3.4 Ga precipitation-sourced water runoff in some places exceeded \(1~\mbox{km}\) column. (2) There is no single Early Mars climate problem: the traces of ≥2 river-forming periods are seen. Relative to rivers that formed earlier in Mars history, rivers that formed later in Mars history are found preferentially at lower elevations, and show a stronger dependence on latitude. (3) The duration of the longest individual river-forming climate was \({>}(10^{2}\mbox{--}10^{3})~\mbox{yr}\), based on paleolake hydrology. (4) Peak runoff production was \({>}0.1~\mbox{mm}/\mbox{hr}\). However, (5) peak runoff production was intermittent, sustained (in a given catchment) for only <10% of the duration of river-forming climates. (6) The cumulative number of wet years during the valley-network-forming period was \({>}10^{5}~\mbox{yr}\). (7) Post-Noachian light-toned, layered sedimentary rocks took \({>}10^{7}~\mbox{yr}\) to accumulate. However, (8) an “average” place on Mars saw water for \({<}10^{7}~\mbox{yr}\) after the Noachian, suggesting that the river-forming climates were interspersed with long globally-dry intervals. (9) Geologic proxies for Early Mars atmospheric pressure indicate pressure was not less than 0.012 bar but not much more than 1 bar. A truth table of these geologic constraints versus currently published climate models shows that the late persistence of river-forming climates, combined with the long duration of individual lake-forming climates, is a challenge for most models.

Keywords

Atmospheric evolution Mars Planetary habitability Paleoclimate 

Notes

Acknowledgements

The results listed above sum up the work of thousands of engineers and scientists. Many great papers are omitted from this review for concision. I am grateful to Chris McKay and Caleb Fassett for formal reviews, and to Tim Goudge, Paul Niles, and Brian Hynek for informal read-throughs. I thank David P. Mayer for generating the CTX DTM used in Fig. 2, and Jack Mustard for sharing a preprint. This paper was stimulated by the Fourth International Conference on Early Mars, and I thank the organizers and participants for that meeting. This work was funded in part by the U.S. taxpayer, via NASA grant NNX16AJ38G.

References

  1. J.B. Adler, J.F. Bell III, P. Fawdon, J. Davis, N.H. Warner, E. Sefton-Nash, T.N. Harrison, Hypotheses for the origin of the Hypanis fan-shaped deposit at the edge of the Chryse escarpment, Mars: is it a delta? Icarus 319, 885–908 (2019) ADSGoogle Scholar
  2. O. Aharonson, M.T. Zuber, D.H. Rothman, N. Schorghofer, K.X. Whipple, Drainage basins and channel incision on Mars. Proc. Natl. Acad. Sci. 99(4), 1780–1783 (2002) ADSGoogle Scholar
  3. R. Amundson, Meteoric water alteration of soil and landscapes at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 488, 155–167 (2018) ADSGoogle Scholar
  4. R. Amundson, W. Dietrich, D. Bellugi, S. Ewing, K. Nishiizumi, G. Chong, J. Owen, R. Finkel, A. Heimsath, B. Stewart, M. Caffee, Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Geol. Soc. Am. Bull. 124(7–8), 1048–1070 (2012) ADSGoogle Scholar
  5. D.T. Andersen, W.H. Pollard, C.P. McKay, J. Heldmann, Cold springs in permafrost on Earth and Mars. J. Geophys. Res., Planets 107(E3), 5015 (2002).  https://doi.org/10.1029/2000JE001436 ADSCrossRefGoogle Scholar
  6. R. Anderson, S.P. Anderson, Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge University Press, Cambridge, 2010) Google Scholar
  7. J.C. Andrews-Hanna, K.W. Lewis, Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. 116(E2), E02007 (2011) ADSGoogle Scholar
  8. J.C. Andrews-Hanna, M.T. Zuber, R.E. Arvidson, S.M. Wiseman, Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 115(E6), E06002 (2010) ADSGoogle Scholar
  9. V. Ansan, N. Mangold, 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: implications for climatic evolution through time. J. Geophys. Res., Planets 118(9), 1873–1894 (2013) ADSGoogle Scholar
  10. J.C. Armstrong, C.B. Leovy, T. Quinn, A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255–271 (2004) ADSGoogle Scholar
  11. R.E. Arvidson, J.F. Bell, P. Bellutta, N.A. Cabrol, J.G. Catalano, J. Cohen, L.S. Crumpler, D.J. Des Marais, T.A. Estlin, W.H. Farrand, R. Gellert, J.A. Grant, R.N. Greenberger, E.A. Guinness, K.E. Herkenhoff, J.A. Herman, K.D. Iagnemma, J.R. Johnson, G. Klingelhöfer, R. Li, K.A. Lichtenberg, S.A. Maxwell, D.W. Ming, R.V. Morris, M.S. Rice, S.W. Ruff, A. Shaw, K.L. Siebach, A. de Souza, A.W. Stroupe, S.W. Squyres, R.J. Sullivan, K.P. Talley, J.A. Townsend, A. Wang, J.R. Wright, A.S. Yen, Spirit Mars Rover Mission: overview and selected results from the northern home plate winter haven to the side of Scamander Crater. J. Geophys. Res. 115(E12), E00F03 (2010) Google Scholar
  12. J.N. Bahcall, M.H. Pinsonneault, S. Basu, Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555(2), 990–1012 (2001) ADSGoogle Scholar
  13. V.R. Baker, V.S. Kale, The role of extreme floods in shaping bedrock channels, in Rivers over Rock: Fluvial Processes in Bedrock Channels, ed. by K.J. Tinkler, E.E. Wohl. AGU Geophysical Monograph, vol. 107 (1998), pp. 153–166 Google Scholar
  14. V.R. Baker, R.G. Strom, V.C. Gulick, J.S. Kargel, G. Komatsu, Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594 (1991) ADSGoogle Scholar
  15. J.L. Bandfield, Rover observations in Gusev Crater: evidence for a style of weathering unique to Mars? Am. Mineral. 102(2), 233–234 (2017) ADSGoogle Scholar
  16. S.G. Banham, S. Gupta, D.M. Rubin, J.A. Watkins, D.Y. Sumner, K.S. Edgett, J.P. Grotzinger, K.W. Lewis, L.A. Edgar, K.M. Stack-Morgan, R. Barnes, J.F. Bell III, M.D. Day, R.C. Ewing, M.G.A. Lapotre, N.T. Stein, F. Rivera-Hernandez, A.R. Vasavada, Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale Crater, Mars. Sedimentology 65, 993–1042 (2018) Google Scholar
  17. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315(5811), 501 (2007) ADSGoogle Scholar
  18. E. Baratti, M. Pajola, S. Rossato, C. Mangili, M. Coradini, A. Montanari, K. McBride, Hydraulic modeling of the tributary and the outlet of a Martian paleolake located in the Memnonia quadrangle. J. Geophys. Res., Planets 120(10), 1597–1619 (2015) ADSGoogle Scholar
  19. C.J. Barnhart, A.D. Howard, J.M. Moore, Long-term precipitation and late-stage valley network formation: landform simulations of Parana basin, Mars. J. Geophys. Res. 114(E1), E01003 (2009) ADSGoogle Scholar
  20. N.E. Batalha, R.K. Kopparapu, J. Haqq-Misra, J.F. Kasting, Climate cycling on early Mars caused by the carbonate-silicate cycle. Earth Planet. Sci. Lett. 455, 7–13 (2016) ADSGoogle Scholar
  21. C.C. Bedford, J.C. Bridges, S.P. Schwenzer, R.C. Wiens, E.B. Rampe, J. Frydenvang, P.J. Gasda, Alteration trends and geochemical source region characteristics preserved in the fluviolacustrine sedimentary record of Gale crater, Mars. Geoch. Cosmoch. Acta 246, 234–266 (2019) ADSGoogle Scholar
  22. G. Berger et al., Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009) ADSGoogle Scholar
  23. J.A. Berger, M.E. Schmidt, R. Gellert, N.I. Boyd, E.D. Desouza, R.L. Flemming, M.R.M. Izawa, D.W. Ming, G.M. Perrett, E.B. Rampe, L.M. Thompson, S.J.V. VanBommel, A.S. Yen, Zinc and germanium in the sedimentary rocks of Gale Crater on Mars indicate hydrothermal enrichment followed by diagenetic fractionation. J. Geophys. Res., Planets 122(8), 1747–1772 (2017) ADSGoogle Scholar
  24. J.-P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772), 400–404 (2006) ADSGoogle Scholar
  25. J.-P. Bibring, R.E. Arvidson, A. Gendrin, B. Gondet, Y. Langevin, S. Le Mouelic, N. Mangold, R.V. Morris, J.F. Mustard, F. Poulet, C. Quantin, C. Sotin, Coupled ferric oxides and sulfates on the Martian surface. Science 317(5842), 1206 (2007) ADSGoogle Scholar
  26. C.J. Bierson, R.J. Phillips, I.B. Smith, S.E. Wood, N.E. Putzig, D. Nunes, S. Byrne, Stratigraphy and evolution of the buried CO2 deposit in the Martian south polar cap. Geophys. Res. Lett. 43(9), 4172–4179 (2016) ADSGoogle Scholar
  27. J.L. Bishop, E.B. Rampe, Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth Planet. Sci. Lett. 448, 42–48 (2016) ADSGoogle Scholar
  28. J.L. Bishop, D. Loizeau, N.K. McKeown, L. Saper, M.D. Dyar, D.J. Des Marais, M. Parente, S.L. Murchie, What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149 (2013) ADSGoogle Scholar
  29. J.L. Bishop, A.G. Fairén, J.R. Michalski, L. Gago-Duport, L.L. Baker, M.A. Velbel, C. Gross, E.B. Rampe, Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. Nat. Astron. 2, 206–213 (2018) ADSGoogle Scholar
  30. L. Borg, M.J. Drake, A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res. 110(E12), E12S03 (2005) ADSGoogle Scholar
  31. C.S. Borlina, B.L. Ehlmann, E.S. Kite, Modeling the thermal and physical evolution of Mount Sharp’s sedimentary rocks, Gale Crater, Mars: implications for diagenesis on the MSL Curiosity rover traverse. J. Geophys. Res., Planets 120(8), 1396–1414 (2015) ADSGoogle Scholar
  32. W.F. Bottke, J.C. Andrews-Hanna, A post-accretionary lull in large impacts on early Mars. Nat. Geosci. 10(5), 344–348 (2017) ADSGoogle Scholar
  33. S. Bouley, D. Baratoux, I. Matsuyama, F. Forget, A. Séjourné, M. Turbet, F. Costard, Late Tharsis formation and implications for early Mars. Nature 531(7594), 344–347 (2016) ADSGoogle Scholar
  34. J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon, M.M. Grady, Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci. Rev. 96(1–4), 365–392 (2001) ADSGoogle Scholar
  35. T.F. Bristow, R.M. Haberle, D.F. Blake et al., Low Hesperian P-CO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc. Natl. Acad. Sci. 114(9), 2166–2170 (2017) ADSGoogle Scholar
  36. T.F. Bristow, E.B. Rampe, C.N. Achilles, D.F. Blake, S.J. Chipera, P. Craig, J.A. Crisp, D.J. Des Marais et al., Clay mineral diversity and abundance in sedimentary rocks of Gale Crater, Mars. Sci. Adv. 4(6), eaar3330 (2018).  https://doi.org/10.1126/sciadv.aar3330 CrossRefGoogle Scholar
  37. P.B. Buhler, C.I. Fassett, J.W. Head, M.P. Lamb, Timescales of fluvial activity and intermittency in Milna Crater, Mars. Icarus 241, 130–147 (2014) ADSGoogle Scholar
  38. D.M. Burr, P.A. Carling, V.R. Baker, Megaflooding on Earth and Mars (Cambridge University Press, Cambridge, 2009) Google Scholar
  39. J. Buz, B.L. Ehlmann, L. Pan, J.P. Grotzinger, Mineralogy and stratigraphy of the Gale Crater rim, wall, and floor units. J. Geophys. Res., Planets 122(5), 1090–1118 (2017) ADSGoogle Scholar
  40. K.M. Cannon, S.W. Parman, J.F. Mustard, Primordial clays on Mars formed beneath a steam or supercritical atmosphere. Nature 552, 88 (2017) ADSGoogle Scholar
  41. B.T. Cardenas, D. Mohrig, T.A. Goudge, Fluvial stratigraphy of valley fills at Aeolis Dorsa, Mars: evidence for base-level fluctuations controlled by a downstream water body. Geol. Soc. Am. Bull. 130(3–4), 484–498 (2018) ADSGoogle Scholar
  42. M.H. Carr, The Surface of Mars (Cambridge University Press, Cambridge, 2006) Google Scholar
  43. M.H. Carr, J.W. Head, Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res., Planets 108(E5), 5042 (2003).  https://doi.org/10.1029/2002JE001963 ADSCrossRefGoogle Scholar
  44. M.H. Carr, J.W. Head, Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42(3), 726–732 (2015) ADSGoogle Scholar
  45. M.H. Carr, M.C. Malin, Meter-scale characteristics of Martian channels and valleys. Icarus 146(2), 366–386 (2000) ADSGoogle Scholar
  46. J. Carter, D. Loizeau, N. Mangold, F. Poulet, J.-P. Bibring, Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248, 373–382 (2015) ADSGoogle Scholar
  47. W.S. Cassata, Meteorite constraints on Martian atmospheric loss and paleoclimate. Earth Planet. Sci. Lett. 479, 322–329 (2017) ADSGoogle Scholar
  48. W.S. Cassata, D.L. Shuster, P.R. Renne, B.P. Weiss, Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites. Geochim. Cosmochim. Acta 74(23), 6900–6920 (2010) ADSGoogle Scholar
  49. W.S. Cassata, D.L. Shuster, P.R. Renne, B.P. Weiss, Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere. Icarus 221(1), 461–465 (2012) ADSGoogle Scholar
  50. D.C. Catling, Atmospheric evolution of Mars, in Encyclopedia of Paleoclimatology and Ancient Environments, ed. by V. Gornitz (Springer, Dordrecht, 2009), pp. 66–75 Google Scholar
  51. D.C. Catling, J.F. Kasting, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017) Google Scholar
  52. J.E. Chappelow, M.P. Golombek, F.J. Calef, Does the Littleton meteorite require a past, denser Martian atmosphere? in 47th Lunar and Planetary Science Conference, March 21–25, 2016, The Woodlands, Texas. LPI Contribution, vol. 1903 (2016), p. 1662 Google Scholar
  53. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110(1), 85–130 (2004) ADSGoogle Scholar
  54. R.I. Citron, M. Manga, D.J. Hemingway, Timing of oceans on Mars from shoreline deformation. Nature 555(7698), 643–646 (2018) ADSGoogle Scholar
  55. S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154(1), 40–79 (2001) ADSGoogle Scholar
  56. G.D. Clow, Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus 72, 95–127 (1987) ADSGoogle Scholar
  57. C.S. Cockell, Habitable worlds with no signs of life. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 372, 20130082 (2014) ADSGoogle Scholar
  58. A. Cousin, P.Y. Meslin, R.C. Wiens, W. Rapin, N. Mangold, C. Fabre, O. Gasnault, O. Forni, R. Tokar, A. Ollila, S. Schröder, J. Lasue, S. Maurice, V. Sautter, H. Newsom, D. Vaniman, S. Le Mouélic, D. Dyar, G. Berger, D. Blaney, M. Nachon, G. Dromart, N. Lanza, B. Clark, S. Clegg, W. Goetz, J. Berger, B. Barraclough, D. Delapp, Compositions of coarse and fine particles in Martian soils at Gale: a window into the production of soils. Icarus 249, 22–42 (2015) ADSGoogle Scholar
  59. R.A. Craddock, A.D. Howard, The case for rainfall on a warm, wet early Mars. J. Geophys. Res., Planets 107(E11), 5111 (2002).  https://doi.org/10.1029/2001JE001505 ADSCrossRefGoogle Scholar
  60. R.A. Craddock, R.D. Lorenz, The changing nature of rainfall during the early history of Mars. Icarus 293, 172–179 (2017) ADSGoogle Scholar
  61. R.A. Craddock, T.A. Maxwell, Geomorphic evolution of the Martian highlands through ancient fluvial processes. J. Geophys. Res., Planets 98, 3453–3468 (1993) ADSGoogle Scholar
  62. L.S. Crumpler, R.E. Arvidson, S.W. Squyres, T. McCoy, A. Yingst, S. Ruff, W. Farrand, Y. McSween, M. Powell, D.W. Ming, R.V. Morris, J.F. Bell III, J. Grant, R. Greeley, D. DesMarais, M. Schmidt, N.A. Cabrol, A. Haldemann, K.W. Lewis, A.E. Wang, C. Schröder, D. Blaney, B. Cohen, A. Yen, J. Farmer, R. Gellert, E.A. Guinness, K.E. Herkenhoff, J.R. Johnson, G. Klingelhöfer, A. McEwen, J.W. Rice Jr., M. Rice, P. deSouza, J. Hurowitz, Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations. J. Geophys. Res., Planets 116, E7, E00F24 (2011) Google Scholar
  63. A. Darling, K. Whipple, Geomorphic constraints on the age of the western Grand Canyon. Geosphere 11(4), 958–976 (2015) ADSGoogle Scholar
  64. J.M. Davis, M. Balme, M. Grindrod, R.M.E. Williams, S. Gupta, Extensive Noachian fluvial systems in Arabia Terra: implications for early Martian climate. Geology 44(10), 847–850 (2016) ADSGoogle Scholar
  65. M. Day, W. Anderson, G. Kocurek, D. Mohrig, Carving intracrater layered deposits with wind on Mars. Geophys. Res. Lett. 43, 2473–2479 (2016) ADSGoogle Scholar
  66. G. de Villiers, M.G. Kleinhans, G. Postma, Experimental delta formation in crater lakes and implications for interpretation of Martian deltas. J. Geophys. Res., Planets 118, 651–670 (2013) ADSGoogle Scholar
  67. E. Dehouck, S.M. McLennan, E.C. Sklute, M.D. Dyar, Stability and fate of ferrihydrite during episodes of water/rock interactions on early Mars: an experimental approach. J. Geophys. Res., Planets 122(2), 358–382 (2017) ADSGoogle Scholar
  68. D.P. Dethier, Pleistocene incision rates in the western United States calibrated using Lava Creek B tephra. Geology 29(9), 783 (2001) ADSGoogle Scholar
  69. G. di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3(7), 459–463 (2010) ADSGoogle Scholar
  70. R.A. DiBiase, A.B. Limaye, J.S. Scheingross, W.W. Fischer, M.P. Lamb, Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res., Planets 118(6), 1285–1302 (2013) ADSGoogle Scholar
  71. J.L. Dickson, C.I. Fassett, J.W. Head, Amazonian-aged fluvial valley systems in a climatic microenvironment on Mars: melting of ice deposits on the interior of Lyot Crater. Geophys. Res. Lett. 36(8), L08201 (2009) ADSGoogle Scholar
  72. W.E. Dietrich, M.C. Palucis, R.M.E. Williams, K.W. Lewis, F. Rivera-Hernandez, D.Y. Sumner, Fluvial gravels on Mars: analysis and implications, in Gravel Bed Rivers: Processes and Disasters, ed. by D. Tsutsumi, J.B. Laronne (Wiley, New York, 2017), pp. 755–783 Google Scholar
  73. S.L. Dingman, Physical Hydrology, 3rd edn. (2014) Google Scholar
  74. S. Diniega, C.J. Hansen, J.N. McElwaine, C.H. Hugenholtz, C.M. Dundas, A.S. McEwen, M.C. Bourke, A new dry hypothesis for the formation of Martian linear gullies. Icarus 225(1), 526–537 (2013) ADSGoogle Scholar
  75. P.T. Doran, C.P. McKay, G.D. Clow, G.L. Dana, A.G. Fountain, T. Nylen, W.B. Lyons, Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J. Geophys. Res., Atmos. 107(D24), 4772 (2002).  https://doi.org/10.1029/2001JD002045 ADSCrossRefGoogle Scholar
  76. H.A. Dugan, M.K. Obryk, P.T. Doran, Lake ice ablation rates from permanently ice-covered Antarctic lakes. J. Glaciol. 59(215), 491–498 (2013) ADSGoogle Scholar
  77. C.M. Dundas, A.S. McEwen, S. Diniega, C.J. Hansen, S. Byrne, J.N. McElwaine, The Formation of Gullies on Mars Today. Special Publications, vol. 467 (Geological Society, London, 2017a).  https://doi.org/10.1144/SP467.5 CrossRefGoogle Scholar
  78. C.M. Dundas, A.S. McEwen, M. Chojnacki et al., Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat. Geosci. 10, 903 (2017b) ADSGoogle Scholar
  79. T. Dunne, D.V. Malmon, K.B.J. Dunne, Limits on the morphogenetic role of rain splash transport in hillslope evolution. J. Geophys. Res., Earth Surf. 121(3), 609–622 (2016) ADSGoogle Scholar
  80. J.R. Eagleman, Pan evaporation, potential and actual evapotranspiration. J. Appl. Meteorol. 6(3), 482–488 (1967) ADSGoogle Scholar
  81. B.C. Eaton, Chap. 9.18: hydraulic geometry, in Treatise on Geomorphology, 9, Fluvial Geomorphology, ed. by E.E. Wohl (Elsevier, Oxford, 2013) Google Scholar
  82. K.S. Edgett, M.C. Malin, Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett. 29(24), 2179 (2002).  https://doi.org/10.1029/2002GL016515 ADSCrossRefGoogle Scholar
  83. C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116(E10), E10008 (2011) ADSGoogle Scholar
  84. B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42(1), 291–315 (2014) ADSGoogle Scholar
  85. B.L. Ehlmann, J.F. Mustard, S.L. Murchie et al., Subsurface water and clay mineral formation during the early history of Mars. Nature 479(7371), 53–60 (2011a) ADSGoogle Scholar
  86. B.L. Ehlmann, J.F. Mustard, R.N. Clark, G.A. Swayze, S.L. Murchie, Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 59(4), 359–377 (2011b) ADSGoogle Scholar
  87. B.L. Ehlmann, F.S. Anderson, J. Andrews-Hanna, D.C. Catling, R. Christensen, B.A. Cohen, C.D. Dressing, C.S. Edwards, L.T. Elkins-Tanton, K.A. Farley, C.I. Fassett, W.W. Fischer, A.A. Fraeman, M.P. Golombek, V.E. Hamilton, A.G. Hayes, C.D.K. Herd, B. Horgan, R. Hu, B.M. Jakosky, J.R. Johnson, J.F. Kasting, L. Kerber, K.M. Kinch, E.S. Kite, H.A. Knutson, J.I. Lunine, R. Mahaffy, N. Mangold, F.M. McCubbin, J.F. Mustard, B. Niles, C. Quantin-Nataf, M.S. Rice, K.M. Stack, D.J. Stevenson, S.T. Stewart, M.J. Toplis, T. Usui, B.P. Weiss, S.C. Werner, R.D. Wordsworth, J.J. Wray, R.A. Yingst, Y.L. Yung, K.J. Zahnle, The sustainability of habitability on terrestrial planets: insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res., Planets 121(10), 1927–1961 (2016) ADSGoogle Scholar
  88. M.R. El-Maarry, J.M. Dohm, G. Michael, N. Thomas, S. Maruyama, Morphology and evolution of the ejecta of Hale Crater in Argyre basin, Mars: results from high resolution mapping. Icarus 226, 905–922 (2013) ADSGoogle Scholar
  89. M.E. Elwood Madden, A.S. Madden, J.D. Rimstidt, How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology 37(7), 635–638 (2009) ADSGoogle Scholar
  90. A.G. Fairén, A cold and wet Mars. Icarus 208(1), 165–175 (2010) ADSGoogle Scholar
  91. A.G. Fairén, A.F. Davila, L. Gago-Duport, R. Amils, C.P. McKay, Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009) ADSGoogle Scholar
  92. A.G. Fairén, J.D. Haqq-Misra, C.P. McKay, Reduced albedo on early Mars does not solve the climate paradox under a faint young Sun. Astron. Astrophys. 540, A13 (2012) ADSGoogle Scholar
  93. K.A. Farley, C. Malespin, P. Mahaffy, J.P. Grotzinger, P.M. Vasconcelos, R.E. Milliken, M. Malin, K.S. Edgett, A.A. Pavlov, J.A. Hurowitz, J.A. Grant et al., In situ radiometric and exposure age dating of the Martian surface. Science 343(6169), 1247166 (2014) Google Scholar
  94. C.I. Fassett, J.W. Head, Fluvial sedimentary deposits on Mars: ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32(14), L14201 (2005) ADSGoogle Scholar
  95. C.I. Fassett, J.W. Head, The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195(1), 61–89 (2008a) ADSGoogle Scholar
  96. C.I. Fassett, J.W. Head, Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198(1), 37–56 (2008b) ADSGoogle Scholar
  97. C.I. Fassett, J.W. Head, Sequence and timing of conditions on early Mars. Icarus 211(2), 1204–1214 (2011) ADSGoogle Scholar
  98. C.I. Fassett, J.L. Dickson, J.W. Head, J.S. Levy, D.R. Marchant, Supraglacial and proglacial valleys on Amazonian Mars. Icarus 208(1), 86–100 (2010) ADSGoogle Scholar
  99. J.L. Fastook, J.W. Head, Glaciation in the late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015) ADSGoogle Scholar
  100. J.L. Fastook, J.W. Head, D.R. Marchant, F. Forget, J.-B. Madeleine, Early Mars climate near the Noachian-Hesperian boundary: independent evidence for cold conditions from basal melting of the south polar ice sheet (Dorsa Argentea formation) and implications for valley network formation. Icarus 219(1), 25–40 (2012) ADSGoogle Scholar
  101. C.M. Fedo, J.P. Grotzinger, S. Gupta, N.T. Stein, J. Watkins, S. Banham, K.S. Edgett, M. Minitti, J. Schieber, K. Siebach, K. Stack-Morgan, H. Newsom, K.W. Lewis, C. House, A.R. Vasavada, Facies analysis and basin architecture of the upper part of the Murray formation, Gale Crater, Mars, in 48th Lunar and Planetary Science Conference. 20–24 March 2017, The Woodlands, Texas. LPI Contribution, vol. 1964 (2017), p. 1689 Google Scholar
  102. R.M. Flowers, K.A. Farley, Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon. Science 338(6114), 1616 (2012) ADSGoogle Scholar
  103. F. Forget, R. Wordsworth, E. Millour, J.-B. Madeleine, L. Kerber, J. Leconte, E. Marcq, R.M. Haberle, 3D modelling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds. Icarus 222(1), 81–99 (2013) ADSGoogle Scholar
  104. N.K. Forsberg-Taylor, A.D. Howard, R.A. Craddock, Crater degradation in the Martian highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. J. Geophys. Res. 109(E5), E05002 (2004) ADSGoogle Scholar
  105. J. Frydenvang, P.J. Gasda, J.A. Hurowitz, J.P. Grotzinger, R.C. Wiens, H.E. Newsom, K.S. Edgett, J. Watkins, J.C. Bridges, S. Maurice, M.R. Fisk, J.R. Johnson, W. Rapin, N.T. Stein, S.M. Clegg, S.P. Schwenzer, C.C. Bedford, P. Edwards, N. Mangold, A. Cousin, R.B. Anderson, V. Payré, D. Vaniman, D.F. Blake, N.L. Lanza, S. Gupta, J. Van Beek, V. Sautter, P.-Y. Meslin, M. Rice, R. Milliken, R. Gellert, L. Thompson, B.C. Clark, D.Y. Sumner, A.A. Fraeman, K.M. Kinch, M.B. Madsen, I.G. Mitrofanov, I. Jun, F. Calef, A.R. Vasavada, Diagenetic silica enrichment and late-stage groundwater activity in Gale Crater, Mars. Geophys. Res. Lett. 44(10), 4716–4724 (2017).  https://doi.org/10.1002/2017GL073323 ADSCrossRefGoogle Scholar
  106. L.R. Gabasova, E.S. Kite, Compaction and sedimentary basin analysis on Mars. Planet. Space Sci. 152, 86–106 (2018) ADSGoogle Scholar
  107. S.F. Gallen, F.J. Pazzaglia, K.W. Wegmann, J.L. Pederson, T.W. Gardner, The dynamic reference frame of rivers and apparent transience in incision rates. Geology 43(7), 623–626 (2015) ADSGoogle Scholar
  108. A. Gaudin, E. Dehouck, O. Grauby, N. Mangold, Formation of clay minerals on Mars: insights from long-term experimental weathering of olivine. Icarus 311, 210–223 (2018) ADSGoogle Scholar
  109. A. Gendrin, N. Mangold, J.-P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. Le Mouélic, Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307(5715), 1587–1591 (2005) ADSGoogle Scholar
  110. G.L. Ghatan, J.R. Zimbelman, Paucity of candidate coastal constructional landforms along proposed shorelines on Mars—implications for a northern lowlands-filling ocean. Icarus 185(1), 171–196 (2006).  https://doi.org/10.1016/j.icarus.2006.06.007 ADSCrossRefGoogle Scholar
  111. T.D. Glotch, J.L. Bandfield, P.R. Christensen, W.M. Calvin, S.M. McLennan, B.C. Clark, A.D. Rogers, S.W. Squyres, Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the miniature thermal emission spectrometer and implications for its formation. J. Geophys. Res. 111, E12, E12S03 (2006) Google Scholar
  112. K. Goddard, N.H. Warner, S. Gupta, J.-R. Kim, Mechanisms and timescales of fluvial activity at Mojave and other young Martian craters. J. Geophys. Res., Planets 119(3), 604–634 (2014) ADSGoogle Scholar
  113. W. Goetz, P. Bertelsen, C.S. Binau, H.P. Gunnlaugsson, S.F. Hviid, K.M. Kinch, D.E. Madsen, M.B. Madsen, M. Olsen, R. Gellert, G. Klingelhöfer, D.W. Ming, R.V. Morris, R. Rieder, D.S. Rodionov, P.A. de Souza, C. Schröder, S.W. Squyres, T. Wdowiak, A. Yen, Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436(7047), 62–65 (2005) ADSGoogle Scholar
  114. M.P. Golombek, J.A. Grant, L.S. Crumpler, R. Greeley, R.E. Arvidson, J.F. Bell, C.M. Weitz, R. Sullivan, R. Christensen, L.A. Soderblom, S.W. Squyres, Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111(E12), E12S10 (2006) ADSGoogle Scholar
  115. M.P. Golombek, N.H. Warner, V. Ganti, M.P. Lamb, T.J. Parker, R.L. Fergason, R. Sullivan, Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res., Planets 119(12), 2522–2547 (2014) ADSGoogle Scholar
  116. T.A. Goudge, C.I. Fassett, Incision of Licus Vallis, Mars, from multiple lake overflow floods. J. Geophys. Res., Planets 123(2), 405–420 (2018) ADSGoogle Scholar
  117. T.A. Goudge, J.W. Head, J.F. Mustard, C.I. Fassett, An analysis of open-basin lake deposits on Mars: evidence for the nature of associated lacustrine deposits and post-lacustrine modification processes. Icarus 219(1), 211–229 (2012) ADSGoogle Scholar
  118. T.A. Goudge, C.I. Fassett, J.W. Head, J.F. Mustard, K.L. Aureli, Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44(6), 419–422 (2016) ADSGoogle Scholar
  119. T.A. Goudge, R.E. Milliken, J.W. Head, J.F. Mustard, C.I. Fassett, Sedimentological evidence for a deltaic origin of the western fan deposit in Jezero Crater, Mars and implications for future exploration. Earth Planet. Sci. Lett. 458, 357–365 (2017) ADSGoogle Scholar
  120. T.A. Goudge, D. Mohrig, B.T. Cardenas, C.M. Hughes, C.I. Fassett, Stratigraphy and paleohydrology of delta channel deposits, Jezero Crater, Mars. Icarus 301, 58–75 (2018) ADSGoogle Scholar
  121. J.A. Grant, S.A. Wilson, Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011).  https://doi.org/10.1029/2011GL046844 ADSCrossRefGoogle Scholar
  122. J.A. Grant, S.A. Wilson, A possible synoptic source of water for alluvial fan formation in southern Margaritifer Terra, Mars. Planet. Space Sci. 72(44), 52 (2012) ADSGoogle Scholar
  123. J.A. Grant, S.A. Wilson, The nature and emplacement of distal aqueous-rich ejecta deposits from Hale crater, Mars. Meteorit. Planet. Sci., 839–856 (2018).  https://doi.org/10.1111/maps.1284353
  124. J.A. Grant, R.P. Irwin III, J.P. Grotzinger et al., HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195–198 (2008) ADSGoogle Scholar
  125. J.A. Grant, R.P. Irwin, S.A. Wilson, D. Buczkowski, K. Siebach, A lake in Uzboi Vallis and implications for late Noachian-early Hesperian climate on Mars. Icarus 212(1), 110–122 (2011) ADSGoogle Scholar
  126. S.E. Grasby, B.C. Proemse, B. Beauchamp, Deep groundwater circulation through the High Arctic cryosphere forms Mars-like gullies. Geology 42(8), 651–654 (2014) ADSGoogle Scholar
  127. J.P. Grotzinger, R.E. Milliken, The sedimentary rock record of Mars: distribution, origins, and global stratigraphy, in Sedimentary Geology of Mars. SEPM Special Publication, vol. 102 (2012), pp. 1–48. ISBN 978-1-56576-312-8 Google Scholar
  128. J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, B.C. Clark, D.A. Fike, M. Golombek, R. Greeley, A. Haldemann, K.E. Herkenhoff, B.L. Jolliff, A.H. Knoll, M. Malin, S.M. McLennan, T. Parker, L. Soderblom, J.N. Sohl-Dickstein, S.W. Squyres, N.J. Tosca, W.A. Watters, Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240(1), 11–72 (2005) ADSGoogle Scholar
  129. J.P. Grotzinger, D.Y. Sumner, L.C. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, R. Milliken, G. Conrad, D. DesMarais, J. Farmer, K. Siebach, F. Calef, J. Hurowitz, S.M. McLennan et al., A Habitable Fluvio-Lacustrine environment at Yellowknife bay, Gale Crater, Mars. Science 343(6169), 1242777 (2014) Google Scholar
  130. J.P. Grotzinger, S. Gupta, M.C. Malin, D.M. Rubin, J. Schieber, K. Siebach, D.Y. Sumner, K. Stack et al., Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, 6257 (2015) Google Scholar
  131. V. Gulick, Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37(3–4), 241–268 (2001) ADSGoogle Scholar
  132. V.C. Gulick, V.R. Baker, Fluvial valleys and Martian palaeoclimates. Nature 341, 514–516 (1989).  https://doi.org/10.1038/341514a0 ADSCrossRefGoogle Scholar
  133. R.M. Haberle, Early Mars climate models. J. Geophys. Res. 103(E12), 28467–28480 (1998) ADSGoogle Scholar
  134. R.M. Haberle, D.C. Catling, M.H. Carr, K.J. Zahnle, The early Mars climate system, in The Atmosphere and Climate of Mars, ed. by R.M. Haberle et al.(Cambridge University Press, Cambridge, 2017), pp. 497–525. ISBN 9781139060172 Google Scholar
  135. R.M. Haberle, K. Zahnle, N.G. Barlow, Warming early Mars by impact degassing of reduced greenhouse gases, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 1682 Google Scholar
  136. E.A. Hajek, M.A. Wolinsky, Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sediment. Geol. 257–260, 1–30 (2012) ADSGoogle Scholar
  137. I. Halevy, J.W. Head III, Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7(12), 865–868 (2014) ADSGoogle Scholar
  138. I. Halevy, W.W. Fischer, J.M. Eiler, Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4 degrees C in a near-surface aqueous environment. Proc. Natl. Acad. Sci. 108(41), 16895–16899 (2011) ADSGoogle Scholar
  139. V.E. Hamilton, P.R. Christensen, Evidence for extensive, olivine-rich bedrock on Mars. Geology 33, 433–436 (2005) ADSGoogle Scholar
  140. K.R. Harrison, M.G. Chapman, Evidence for ponding and catastrophic flood in central Valles Marineris. Icarus 198, 351–364 (2008).  https://doi.org/10.1016/j.icarus.2008.08.003 ADSCrossRefGoogle Scholar
  141. W.K. Hartmann, Geological observations of Martian arroyos. J. Geophys. Res. 79, 3951–3957 (1974) ADSGoogle Scholar
  142. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005) ADSGoogle Scholar
  143. E. Hauber, T. Platz, D. Reiss, L. Le Deit, M.G. Kleinhans, W.A. Marra, T. Haas, P. Carbonneau, Asynchronous formation of Hesperian and Amazonian-aged deltas on Mars and implications for climate. J. Geophys. Res., Planets 118, 1529–1544 (2013) ADSGoogle Scholar
  144. E.M. Hausrath, A.K. Navarre-Sitchler, P.B. Sak et al., Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars. Geology 36(1), 67–70 (2008) ADSGoogle Scholar
  145. J.W. Head, Mars planetary hydrology: was the Martian hydrological cycle and system ever globally vertically integrated? in 43rd Lunar and Planetary Science Conference, March 19–23, 2012, The Woodlands, Texas. LPI Contribution, vol. 1659 (2012), p. 2137 Google Scholar
  146. J.W. Head, Mars climate history: a geological perspective, in The Sixth International Workshop on the Mars Atmosphere: Modelling and Observation, January 17–20, 2017, Granada, Spain. Scientific committee: F. Forget, M.A. Lopez-Valverde, S. Amiri, M.-C. Desjean, F. Gonzalez-Galindo, J. Hollingsworth, B. Jakosky, S.R. Lewis, D. McCleese, E. Millour, H. Svedhem, D. Titov, M. Wolff (2017), p. 4301 Google Scholar
  147. J.W. Head, D.R. Marchant, The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarct. Sci. 26(06), 774–800 (2014) ADSGoogle Scholar
  148. J.W. Head, R. Wordsworth, F. Forget, M. Turbet, Deciphering the Noachian geological and climate history of Mars: part 2: a Noachian stratigraphic view of major geologic processes and their climatic consequences, in Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, Proceedings of the Conference. 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014 (2017), p. 3047 Google Scholar
  149. M.H. Hecht, Metastability of liquid water on Mars. Icarus 156(2), 373–386 (2002) ADSGoogle Scholar
  150. W. Hildreth, J. Fierstein, The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century, centennial perspectives. U. S. Geol. Surv. Prof. Pap. 1791, 259 (2012) Google Scholar
  151. M.R.T. Hoke, B.M. Hynek, Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114(E8), E08002 (2009) ADSGoogle Scholar
  152. M.R.T. Hoke, B.M. Hynek, G.E. Tucker, Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312(1), 1–12 (2011) ADSGoogle Scholar
  153. A. Howard, Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing. Geomorphology 91, 332–363 (2007) ADSGoogle Scholar
  154. A.D. Howard, J.M. Moore, Late Hesperian to early Amazonian midlatitude Martian valleys: evidence from Newton and Gorgonum basins. J. Geophys. Res. 116(E5), E05003 (2011) ADSGoogle Scholar
  155. A.D. Howard, J.M. Moore, R.P. Irwin, An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110(E12), E12S14 (2005) ADSGoogle Scholar
  156. R. Hu, D.M. Kass, B.L. Ehlmann, Y.L. Yung, Tracing the fate of carbon and the atmospheric evolution of Mars. Nat. Commun. 6, 10003 (2015) ADSGoogle Scholar
  157. C.M. Hughes, B.T. Cardenas, T.A. Goudge, D. Mohrig, Deltaic deposits indicative of a paleo-coastline at Aeolis Dorsa, Mars. Icarus 317, 442–453 (2019) ADSGoogle Scholar
  158. M. Humayun, A. Nemchin, B. Zanda, R.H. Hewins, M. Grange, A. Kennedy, J.-P. Lorand, C. Göpel, C. Fieni, S. Pont, D. Deldicque, Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013) ADSGoogle Scholar
  159. J.A. Hurowitz, W.W. Fischer, Contrasting styles of water-rock interaction at the Mars Exploration Rover landing sites. Geochim. Cosmochim. Acta 127, 25–38 (2014) ADSGoogle Scholar
  160. J.A. Hurowitz, S.M. McLennan, A \(\sim 3.5~\mbox{Ga}\) record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260(3–4), 432–443 (2007) ADSGoogle Scholar
  161. J.A. Hurowitz, S.M. McLennan, N.J. Tosca, R.E. Arvidson, J.R. Michalski, D.W. Ming, C. Schröder, S.W. Squyres, In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. 111, E2, E02S19 (2006) Google Scholar
  162. J.A. Hurowitz, W. Fischer, N.J. Tosca et al., Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3: 5, 323–326 (2010) ADSGoogle Scholar
  163. J.A. Hurowitz, J.P. Grotzinger, W.W. Fischer, S.M. McLennan, R.E. Milliken, N. Stein, A.R. Vasavada, D.F. Blake, E. Dehouck, J.L. Eigenbrode, A.G. Fairén, J. Frydenvang, R. Gellert, J.A. Grant, S. Gupta, K.E. Herkenhoff, D.W. Ming, E.B. Rampe, M.E. Schmidt, K.L. Siebach, K. Stack-Morgan, D.Y. Sumner, R.C. Wiens, Redox stratification of an ancient lake in Gale Crater, Mars. Science 356(6341), aah6849 (2017) ADSGoogle Scholar
  164. B.M. Hynek, G. Di Achille, Geologic map of Meridiani Planum, Mars (ver. 1.1, April 2017): U.S. Geological Survey Scientific Investigations Map 3356, pamphlet 9 pp., scale 1:2,000,000 (2017).  https://doi.org/10.3133/sim3356
  165. B.M. Hynek, R.J. Phillips, New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology 31(9), 757 (2003) ADSGoogle Scholar
  166. B.M. Hynek, M. Beach, M.R.T. Hoke, Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115(E9), E09008 (2010) ADSGoogle Scholar
  167. R.P. Irwin, Testing links between impacts and fluvial erosion on post-Noachian Mars, in 44th Lunar and Planetary Science Conference, March 18–22, 2013, The Woodlands, Texas. LPI Contribution, vol. 1719, (2013), p. 2958 Google Scholar
  168. R.P. Irwin, T.A. Maxwell, A.D. Howard, R.A. Craddock, D.W. Leverington, A large paleolake basin at the head of Ma’adim Vallis, Mars. Science 296(5576), 2209–2212 (2002) ADSGoogle Scholar
  169. R.P. Irwin, A.D. Howard, T.A. Maxwell, Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. 109(E12), E12009 (2004) ADSGoogle Scholar
  170. R.P. Irwin, A.D. Howard, R.A. Craddock, J.M. Moore, An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110(E12), E12S15 (2005a) ADSGoogle Scholar
  171. R.P. Irwin, R.A. Craddock, A.D. Howard, Interior channels in Martian valley networks: discharge and runoff production. Geology 33(6), 489–492 (2005b) ADSGoogle Scholar
  172. R.P. Irwin, K.L. Tanaka, S.J. Robbins, Distribution of early, middle, and late Noachian cratered surfaces in the Martian highlands: implications for resurfacing events and processes. J. Geophys. Res., Planets 118(2), 278–291 (2013) ADSGoogle Scholar
  173. R.P. Irwin, K.W. Lewis, A.D. Howard, J.A. Grant, Paleohydrology of Eberswalde crater, Mars. Geomorphology (2015).  https://doi.org/10.1016/j.geomorph.2014.10.012 CrossRefGoogle Scholar
  174. M.A. Ivanov, G. Erkeling, H. Hiesinger, H. Bernhardt, D. Reiss, Topography of the Deuteronilus contact on Mars: evidence for an ancient water/mud ocean and long-wavelength topographic readjustments. Planet. Space Sci. 144, 49–70 (2017) ADSGoogle Scholar
  175. R.E. Jacobsen, D.M. Burr, Greater contrast in Martian hydrological history from more accurate estimates of paleodischarge. Geophys. Res. Lett. 43(17), 8903–8911 (2016) ADSGoogle Scholar
  176. B.M. Jakosky, J.H. Jones, The history of Martian volatiles. Rev. Geophys. 35(1), 1–16 (1997) ADSGoogle Scholar
  177. B.M. Jakosky, R.J. Phillips, Mars’ volatile and climate history. Nature 412(6843), 237–244 (2001) ADSGoogle Scholar
  178. B.M. Jakosky, M. Slipski, M. Benna et al., Mars’ atmospheric history derived from upper-atmosphere measurements of Ar-38/Ar-36. Science 355, 1408 (2017) ADSMathSciNetGoogle Scholar
  179. B.M. Jakosky et al., Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315, 146–157 (2018).  https://doi.org/10.1016/j.icarus.2018.05.030 ADSCrossRefGoogle Scholar
  180. R. Jaumann, D. Reiss, S. Frei, G. Neukum, F. Scholten, K. Gwinner, T. Roatsch, K.-D. Matz, V. Mertens, E. Hauber, H. Hoffmann, U. Köhler, J.W. Head, H. Hiesinger, M.H. Carr, Interior channels in Martian valleys: constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera. Geophys. Res. Lett. 32(16), L16203 (2005) ADSGoogle Scholar
  181. L.C. Kah, K.M. Stack, J.L. Eigenbrode, R.A. Yingst, K.S. Edgett, Syndepositional precipitation of calcium sulfate in Gale Crater, Mars. Terra Nova 30(6), 431–439 (2018).  https://doi.org/10.1111/ter.12359 ADSCrossRefGoogle Scholar
  182. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101(1), 108–128 (1993) ADSGoogle Scholar
  183. S.V. Kaufman, J.F. Mustard, J.W. Head, Characterization of the alteration of Antarctic ash: the products of a cold and icy environment, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 2375 Google Scholar
  184. L. Kerber, J.W. Head, The age of the Medusae Fossae formation: evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts. Icarus 206(2), 669–684 (2010) ADSGoogle Scholar
  185. L. Kerber, F. Forget, R. Wordsworth, Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015) ADSGoogle Scholar
  186. E.S. Kite, An ice-and-snow hypothesis for early Mars, and the runoff-production test, in Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, Proceedings of the Conference. 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014 (2017), p. 3044 Google Scholar
  187. E.S. Kite, R.C.A. Hindmarsh, Did ice streams shape the largest channels on Mars? Geophys. Res. Lett. 34, L19202 (2007).  https://doi.org/10.1029/2007GL030530 ADSCrossRefGoogle Scholar
  188. E.S. Kite, I. Matsuyama, M. Manga, J.T. Perron, J.X. Mitrovica, True Polar Wander driven by late-stage volcanism and the distribution of paleopolar deposits on Mars. Earth Planet. Sci. Lett. 280, 254–267 (2009) ADSGoogle Scholar
  189. E.S. Kite, T.I. Michaels, S.C.R. Rafkin, M. Manga, W.E. Dietrich, Localized precipitation and runoff on Mars. J. Geophys. Res., Planets 116, E07002, 20 (2011a).  https://doi.org/10.1029/2010JE003783 ADSCrossRefGoogle Scholar
  190. E.S. Kite, S. Rafkin, T.I. Michaels, W.E. Dietrich, M. Manga, Chaos terrain, storms, and past climate on Mars. J. Geophys. Res. 116(E10), E10002 (2011b) ADSGoogle Scholar
  191. E.S. Kite, I. Halevy, M.A. Kahre, M.J. Wolff, M. Manga, Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223(1), 181–210 (2013a) ADSGoogle Scholar
  192. E.S. Kite, A. Lucas, C.I. Fassett, Pacing Early Mars river activity: embedded craters in the Aeolis Dorsa region imply river activity spanned \(\gtrsim(1\mbox{--}20)~\mbox{Myr}\). Icarus 225, 850–855 (2013b) ADSGoogle Scholar
  193. E.S. Kite, J.-P. Williams, A. Lucas, O. Aharonson, Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7(5), 335–339 (2014) ADSGoogle Scholar
  194. E.S. Kite, A.D. Howard, A.S. Lucas, J.C. Armstrong, O. Aharonson, M.P. Lamb, Stratigraphy of Aeolis Dorsa, Mars: stratigraphic context of the great river deposits. Icarus 253, 223–242 (2015) ADSGoogle Scholar
  195. E.S. Kite, P. Gao, C. Goldblatt, M.A. Mischna, D.P. Mayer, Y.L. Yung, Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nat. Geosci. 10, 737–740 (2017a) ADSGoogle Scholar
  196. E.S. Kite, J. Sneed, D.P. Mayer, S.A. Wilson, Persistent or repeated surface habitability on Mars during the late Hesperian–Amazonian. Geophys. Res. Lett. 44(9), 3991–3999 (2017b) ADSGoogle Scholar
  197. E.S. Kite, L.J. Steele, M.A. Mischna, The cirrus cloud greenhouse on Early Mars: an explanation, the explanation, or no explanation for rivers and lakes? in AGU Fall Meeting (2018), P51F-2942 Google Scholar
  198. E.S. Kite, D.P. Mayer, S.A. Wilson, J.M. Davis, A.S. Lucas, G. Stucky de Quay, Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. (2019, in press) Google Scholar
  199. M.G. Kleinhans, Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. J. Geophys. Res. 110(E12), E12003 (2005) ADSGoogle Scholar
  200. M.G. Kleinhans, H.E. van de Kasteele, E. Hauber, Palaeoflow reconstruction from fan delta morphology on Mars. Earth Planet. Sci. Lett. 294(3–4), 378–392 (2010) ADSGoogle Scholar
  201. A.H. Knoll, M. Carr, B. Clark, D.J. Des Marais, J.D. Farmer, W.W. Fischer, J.P. Grotzinger, S.M. McLennan, M. Malin, C. Schröder, S. Squyres, N.J. Tosca, T. Wdowiak, An astrobiological perspective on Meridiani Planum. Earth Planet. Sci. Lett. 240(1), 179–189 (2005) ADSGoogle Scholar
  202. A.H. Knoll, B.L. Jolliff, W.H. Farrand, J.F. Bell III, B.C. Clark, R. Gellert, M.P. Golombek, J.P. Grotzinger, K.E. Herkenhoff, J.R. Johnson, S.M. McLennan, R. Morris, S.W. Squyres, R. Sullivan, N.J. Tosca, A. Yen, Z. Learner, Veneers, rinds, and fracture fills: relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. J. Geophys. Res. 113(E6), E06S16 (2008) Google Scholar
  203. W.C. Koeppen, V.E. Hamilton, Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res. 113, E05001 (2008) ADSGoogle Scholar
  204. R.K. Kopparapu, R. Ramirez, J.F. Kasting, V. Eymet, T.D. Robinson, S. Mahadevan, R.C. Terrien, S. Domagal-Goldman, V. Meadows, R. Deshpande, Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765(2), 131 (2013) ADSGoogle Scholar
  205. E.R. Kraal, E. Asphaug, J.M. Moore, A. Howard, A. Bredt, Catalogue of large alluvial fans in Martian impact craters. Icarus 194(1), 101–110 (2008a) ADSGoogle Scholar
  206. E.R. Kraal, M. van Dijk, G. Postma, M.G. Kleinhans, Martian stepped-delta formation by rapid water release. Nature 451(7181), 973–976 (2008b) ADSGoogle Scholar
  207. T. Kurahashi-Nakamura, E. Tajika, Atmospheric collapse and transport of carbon dioxide into the subsurface on early Mars. Geophys. Res. Lett. 33(18), L18205 (2006) ADSGoogle Scholar
  208. H. Kurokawa, K. Kurosawa, T. Usui, A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299, 443–459 (2018) ADSGoogle Scholar
  209. M.P. Lamb, W.E. Dietrich, S.M. Aciego, D.J. DePaolo, M. Manga, Formation of Box Canyon, Idaho, by megaflood: implications for Seepage Erosion on Earth and Mars. Science 320(5879), 1067 (2008) ADSGoogle Scholar
  210. M.P. Lamb, N.J. Finnegan, J.S. Scheingross, L.S. Sklar, New insights into the mechanics of fluvial bedrock erosion through flume experiments and theory. Geomorphology 244, 33–55 (2015) ADSGoogle Scholar
  211. H. Lammer, E. Chassefière, Ö. Karatekin, A. Morschhauser, P.B. Niles, O. Mousis, P. Odert, U.V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L.B.S. Pham, Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174(1–4), 113–154 (2013) ADSGoogle Scholar
  212. M.G.A. Lapôtre, M.P. Lamb, Substrate controls on valley formation by groundwater on Earth and Mars. Geology 46(6), 531–534 (2018) ADSGoogle Scholar
  213. M.G.A. Lapôtre, R.C. Ewing, M.P. Lamb et al., Large wind ripples on Mars: a record of atmospheric evolution. Science 353(6294), 55–58 (2016) ADSGoogle Scholar
  214. L. Le Deit, J. Flahaut, C. Quantin, E. Hauber, D. Mège, O. Bourgeois, J. Gurgurewicz, M. Massé, R. Jaumann, Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. J. Geophys. Res. 117, E00J05 (2012) Google Scholar
  215. H.J. Leask, L. Wilson, K.L. Mitchell, Formation of Mangala Valles outflow channel, Mars: morphological development and water discharge and duration estimates. J. Geophys. Res. 112(E8), E08003 (2007) ADSGoogle Scholar
  216. E.K. Leask, B.L. Ehlmann, M.M. Dundar, S.L. Murchie, F.P. Seelos, Challenges in the search for perchlorate and other hydrated minerals with 2.1-μm absorptions on Mars. Geophys. Res. Lett. 45, 12180–12189 (2018) ADSGoogle Scholar
  217. C.O. Lee, B.M. Jakosky, J.G. Luhmann, D.A. Brain, M.L. Mays, D.M. Hassler, M. Holmström, D.E. Larson, D.L. Mitchell, C. Mazelle, J.S. Halekas, Observations and impacts of the 10 September 2017 solar events at Mars: an overview and synthesis of the initial results. Geophys. Res. Lett. 45, 8871–8885 (2018) ADSGoogle Scholar
  218. A. Lefort, D.M. Burr, R.A. Beyer, A.D. Howard, Inverted fluvial features in the Aeolis-Zephyria plana, western Medusae Fossae formation, Mars: evidence for post-formation modification. J. Geophys. Res. 117(E3), E03007 (2012) ADSGoogle Scholar
  219. K.W. Lewis, O. Aharonson, Stratigraphic analysis of the distributary fan in Eberswalde Crater using stereo imagery. J. Geophys. Res. 111(E6), E06001 (2006) ADSGoogle Scholar
  220. K.W. Lewis, O. Aharonson, Occurrence and origin of rhythmic sedimentary rocks on Mars. J. Geophys. Res., Planets 119(6), 1432–1457 (2014) ADSGoogle Scholar
  221. K.W. Lewis, O. Aharonson, J.P. Grotzinger et al., Quasi-periodic bedding in the sedimentary rock record of Mars. Science 322(5907), 1532–1535 (2008) ADSGoogle Scholar
  222. C. Li, M.J. Czapiga, E.C. Eke, E. Viparelli, G. Parker, Variable shields number model for river bankfull geometry: bankfull shear velocity is viscosity-dependent but grain size-independent. J. Hydraul. Res. 53, 36–48 (2015) Google Scholar
  223. R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res., Planets 118(7), 1488–1511 (2013) ADSGoogle Scholar
  224. R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J. Fox, J. Deighan, X. Fang, Y.C. Wang, Y. Lee, C. Dong, Y. Ma, T. Cravens, L. Andersson, S.M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D.L. Mitchell, R. Yelle, A.F. Nagy, D. Baker, R.P. Lin, Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 195(1–4), 357–422 (2015) ADSGoogle Scholar
  225. R.J. Lillis, J. Deighan, J.L. Fox, S.W. Bougher, Y. Lee, M.R. Combi, T.E. Cravens, A. Rahmati, P.R. Mahaffy, M. Benna, M.K. Elrod, J.P. McFadden, R.E. Ergun, L. Andersson, C.M. Fowler, B.M. Jakosky, E. Thiemann, F. Eparvier, J.S. Halekas, F. Leblanc, J.-Y. Chaufray, Photochemical escape of oxygen from Mars: first results from MAVEN in situ data. J. Geophys. Res. Space Phys. 122, 3815–3836 (2017) ADSGoogle Scholar
  226. D. Loizeau, S.C. Werner, N. Mangold, J.-P. Bibring, J.L. Vago, Chronology of deposition and alteration in the Mawrth Vallis region, Mars. Planet. Space Sci. 72(1), 31–43 (2012) ADSGoogle Scholar
  227. D. Loizeau, C. Quantin-Nataf, J. Carter, J. Flahaut, P. Thollot, L. Lozac’h, C. Millot, Quantifying widespread aqueous surface weathering on Mars: the plateaus south of Coprates Chasma. Icarus 302, 451–469 (2018) ADSGoogle Scholar
  228. J. Longhi, Phase equilibrium in the system CO2-H2O: application to Mars. J. Geophys. Res. 111(E6), E06011 (2006) ADSGoogle Scholar
  229. R. Lundin, S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. Dubinin, M. Fraenz, Solar cycle effects on the ion escape from Mars. Geophys. Res. Lett. 40, 6028–6032r (2013) ADSGoogle Scholar
  230. W. Luo, X. Cang, A.D. Howard, New Martian valley network estimate consistent with ancient ocean and warm and wet climate. Nat. Commun. 8, 15766 (2017) ADSGoogle Scholar
  231. R. Mahaffy, C.R. Webster, J.C. Stern et al., The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347(6220), 412–414 (2015) ADSGoogle Scholar
  232. M.C. Malin, 1. Comparison of volcanic features of Elysium (Mars) and Tibesti (Earth). 2. Age of Martian channels. 3. Nature and origin of intercrater plains on Mars. Ph.D. Thesis, Caltech (1976) Google Scholar
  233. M.C. Malin, K.S. Edgett, Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26(19), 3049–3052 (1999) ADSGoogle Scholar
  234. M.C. Malin, K.S. Edgett, Sedimentary rocks of early Mars. Science 290(5498), 1927–1937 (2000) ADSGoogle Scholar
  235. M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302(5652), 1931–1934 (2003) ADSGoogle Scholar
  236. M.C. Malin, J.F. Bell, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. 112, E5, E05S04 (2007) Google Scholar
  237. M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, M.A. Ravine, J.L. Sandoval, K.D. Supulver, An overview of the 1985–2006 Mars orbiter camera science investigation. Mars Int. J. Mars Sci. Explor. 4, 1–60 (2010) Google Scholar
  238. M. Manga, A. Patel, J. Dufek, E.S. Kite, Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophys. Res. Lett. 39(1), L01202 (2012) ADSGoogle Scholar
  239. N. Mangold, Fluvial landforms on fresh impact ejecta on Mars. Planet. Space Sci. 62(1), 69–85 (2012) ADSGoogle Scholar
  240. N. Mangold, C. Quantin, V. Ansan, C. Delacourt, P. Allemand, Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris Area. Science 305(5680), 78–81 (2004) ADSGoogle Scholar
  241. N. Mangold, V. Ansan, Ph. Masson, C. Quantin, G. Neukum, Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars. J. Geophys. Res. 113(E8), E08009 (2008) ADSGoogle Scholar
  242. N. Mangold, S. Adeli, S. Conway, V. Ansan, B. Langlais, A chronology of early Mars climatic evolution from impact crater degradation. J. Geophys. Res. 117(E4), E04003 (2012) ADSGoogle Scholar
  243. N. Mangold et al., Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus 321, 619–631 (2019) ADSGoogle Scholar
  244. C.V. Manning, C.P. McKay, K.J. Zahnle, Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180(1), 38–59 (2006) ADSGoogle Scholar
  245. C.V. Manning, C. Bierson, N.E. Putzig, C.P. McKay, The formation and stability of buried polar CO2 deposits on Mars. Icarus 317, 509–517 (2019) ADSGoogle Scholar
  246. M. Mansfield, E.S. Kite, M.A. Mischna, Effect of Mars atmospheric loss on snow melt potential in a 3.5 Gyr Mars climate evolution model. J. Geophys. Res., Planets 123(4), 794–806 (2018) ADSGoogle Scholar
  247. P.E. Marcelo Garcia, Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. MOP, vol. 110 (American Society of Civil Engineers, Reston, 2008). ISBN 978-0-7844-0814-8 Google Scholar
  248. E. Martin, K.A. Farley, M.B. Baker, C.A. Malespin, S. Schwenzer, B.A. Cohen, R. Mahaffy, A.C. McAdam, D.W. Ming, M. Vasconcelos, R. Navarro-González, A two-step K-Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res., Planets (2017).  https://doi.org/10.1002/2017JE005445 CrossRefGoogle Scholar
  249. H. Masursky, An overview of geological results from Mariner 9. J. Geophys. Res. 78, 4009–4030 (1973) ADSGoogle Scholar
  250. Y. Matsubara, A.D. Howard, S.A. Drummond, Hydrology of early Mars: lake basins. J. Geophys. Res. 116(E4), E04001 (2011) ADSGoogle Scholar
  251. Y. Matsubara, A.D. Howard, R.P. Irwin, Constraints on the Noachian paleoclimate of the Martian highlands from landscape evolution modeling. J. Geophys. Res. 123(11) (2018).  https://doi.org/10.1029/2018JE005572
  252. T.J. McCoy, M. Sims, M.E. Schmidt, L. Edwards, L.L. Tornabene, L.S. Crumpler, B.A. Cohen, L.A. Soderblom, D.L. Blaney, S.W. Squyres, R.E. Arvidson, J.W. Rice, E. Tréguier, C. d’Uston, J.A. Grant, H.Y. McSween, M.P. Golombek, A.F.C. Haldemann, P.A. de Souza, Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. J. Geophys. Res. 113, E6, E06S03 (2008) Google Scholar
  253. F.M. McCubbin, J.W. Boyce, T. Novák-Szabó, A.R. Santos, R. Tartèse, N. Muttik, G. Domokos, J. Vazquez, L.P. Keller, D.E. Moser, D.J. Jerolmack, C.K. Shearer, A. Steele, S.M. Elardo, Z. Rahman, M. Anand, T. Delhaye, C.B. Agee, Geologic history of Martian regolith breccia northwest Africa 7034: evidence for hydrothermal activity and lithologic diversity in the Martian crust. J. Geophys. Res., Planets 121(10), 2120–2149 (2016) ADSGoogle Scholar
  254. A.S. McEwen, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, M.T. Mellon, S.W. Squyres, N. Thomas, C.M. Weitz, Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E5, E05S02 (2007) Google Scholar
  255. A. McEwen, J. Grant, J. Mustard, J. Wray, L. Tornabene, Early Noachian rocks in megabreccia deposits on Mars, in European Planetary Science Congress, 14–18 September, 2009, Potsdam, Germany (2009), p. 504. http://meetings.copernicus.org/epsc2009 Google Scholar
  256. I.O. McGlynn, C.M. Fedo, H.Y. McSween Jr., Soil mineralogy at the Mars Exploration Rover landing sites: an assessment of the competing roles of physical sorting and chemical weathering. J. Geophys. Res. 117(E1), E01006 (2012) ADSGoogle Scholar
  257. C.P. McKay, R.A. Wharton Jr., S.W. Squyres, G.D. Clow, Thickness of ice on perennially frozen lakes. Nature 313, 561–562 (1985) ADSGoogle Scholar
  258. C.P. McKay, D.T. Andersen, W.H. Pollard, J.L. Heldmann, P.T. Doran, C.H. Fritsen, J.C. Priscu, Polar lakes, streams, and springs as analogs for the hydrological cycle on Mars, in Water on Mars and Life (Springer, Berlin, 2005), pp. 219–233 Google Scholar
  259. S.M. McLennan, Geochemistry of sedimentary processes on Mars, in Sedimentary Geology of Mars, ed. by Grotzinger, Milliken. SEPM Special Publication, vol. 102 (SEPM, McLean, 2012), pp. 119–138. ISBN 978-1-56576-312-8 Google Scholar
  260. S.M. McLennan, J.P. Grotzinger, The sedimentary rock cycle of Mars, in The Martian Surface—Composition, Mineralogy, and Physical Properties, ed. by J Bell III (Cambridge University Press, Cambridge, 2008), p. 541. ISBN 9780521866989 Google Scholar
  261. S.M. McLennan, J.F. Bell, W.M. Calvin, P.R. Christensen, B.C. Clark, P.A. de Souza, J. Farmer, W.H. Farrand, D.A. Fike, R. Gellert, A. Ghosh, T.D. Glotch, J.P. Grotzinger, B. Hahn, K.E. Herkenhoff, J.A. Hurowitz, J.R. Johnson, S.S. Johnson, B. Jolliff, G. Klingelhöfer, A.H. Knoll, Z. Learner, M.C. Malin, H.Y. McSween, J. Pocock, S.W. Ruff, L.A. Soderblom, S.W. Squyres, N.J. Tosca, W.A. Watters, M.B. Wyatt, A. Yen, Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95–121 (2005) ADSGoogle Scholar
  262. S.M. McLennan, R.B. Anderson, J.F. Bell III et al., Elemental geochemistry of sedimentary rocks at Yellowknife bay, Gale Crater, Mars. Science 343(6169), 1244734 (2014) Google Scholar
  263. S.M. McLennan, J.P. Grotzinger, J.A. Hurowitz, N.J. Tosca, The sedimentary cycle on Early Mars. Annu. Rev. Earth Planet. Sci. 47 (2019).  https://doi.org/10.1146/annurev-earth-053018-060332
  264. S. McMahon, T. Bosak, J.P. Grotzinger, R.E. Milliken, R.E. Summons, M. Daye, S.A. Newman, A. Fraeman, K.H. Williford, D.E.G. Briggs, A field guide to finding fossils on Mars. J. Geophys. Res., Planets (2018).  https://doi.org/10.1029/2017JE005478 CrossRefGoogle Scholar
  265. M.T. Mellon, R.J. Phillips, Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106(E10), 23165–23180 (2001) ADSGoogle Scholar
  266. J. Melosh, Planetary Surface Processes (Cambridge University Press, Cambridge, 2009) Google Scholar
  267. M. Melwani Daswani, E.S. Kite, Paleohydrology on Mars constrained by mass balance and minerology of pre-Amazonian sodium chloride lakes: deep groundwater not required. J. Geophys. Res., Planets 122, 1802–1823 (2017).  https://doi.org/10.1002/2017JE005319 ADSCrossRefGoogle Scholar
  268. MEPAG, Mars Scientific Goals, Objectives, Investigations, and Priorities: 2018. D. Banfield, ed., 81 p. white paper posted October, 2018 by the Mars Exploration Program Analysis Group (MEPAG) at https://mepag.jpl.nasa.gov/reports.cfm (2018)
  269. J.M. Metz, J.P. Grotzinger, D.M. Rubin, K.W. Lewis, S.W. Squyres, J.F. Bell, Sulfate-rich Eolian and wet interdune deposits, Erebus Crater, Mars. J. Sediment. Res. 79, 247–264 (2009a) ADSGoogle Scholar
  270. J. Metz, J. Grotzinger, D. Mohrig, R. Milliken, B. Prather, C. Pirmez, A.S. McEwen, C. Weitz, Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114(E10), E10002 (2009b) ADSGoogle Scholar
  271. G.G. Michael, Planetary surface dating from crater size-frequency distribution measurements: multiple resurfacing episodes and differential isochron fitting. Icarus 226(1), 885–890 (2013) ADSGoogle Scholar
  272. J.R. Michalski, J. Cuadros, J.L. Bishop, M. Darby Dyar, V. Dekov, S. Fiore, Constraints on the crystal-chemistry of Fe/Mg-rich smectitic clays on Mars and links to global alteration trends. Earth Planet. Sci. Lett. 427, 215–225 (2015) ADSGoogle Scholar
  273. J.A. Mikucki, E. Auken, S. Tulaczyk, R.A. Virginia, C. Schamper, K.I. Sørensen, P.T. Doran, H. Dugan, N. Foley, Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nat. Commun. 6, 6831 (2015) ADSGoogle Scholar
  274. R.E. Milliken, D.L. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90(17), 2293–2308 (2010) ADSGoogle Scholar
  275. R.E. Milliken, R.C. Ewing, W.W. Fischer, J. Hurowitz, Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars. Geophys. Res. Lett. 41(4), 1149–1154 (2014) ADSGoogle Scholar
  276. J.D. Milliman, J.P.M. Syvitski, Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992) ADSGoogle Scholar
  277. D.W. Ming, D.W. Mittlefehldt, R.V. Morris, D.C. Golden, R. Gellert, A. Yen, B.C. Clark, S.W. Squyres, W.H. Farrand, S.W. Ruff, R.E. Arvidson, G. Klingelhöfer, H.Y. McSween, D.S. Rodionov, C. Schröder, P.A. de Souza, A. Wang, Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev Crater, Mars. J. Geophys. Res. 111, E2, E02S12 (2006) Google Scholar
  278. M.A. Mischna, M.I. Richardson, A reanalysis of water abundances in the Martian atmosphere at high obliquity. Geophys. Res. Lett. 32(3), L03201 (2005) ADSGoogle Scholar
  279. M.A. Mischna, V. Baker, R. Milliken, M. Richardson, C. Lee, Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res., Planets 118(3), 560–576 (2013) ADSGoogle Scholar
  280. Z.M. Moratto, M.J. Broxton, R.A. Beyer, M. Lundy, K. Husmann, Ames stereo pipeline, NASA’s open source automated stereogrammetry software, in 41st Lunar and Planetary Science Conference, March 1–5, 2010, The Woodlands, Texas. LPI Contribution, vol. 1533 (2010), p. 2364 Google Scholar
  281. A.M. Morgan, A.D. Howard, D.E.J. Hobley, J.M. Moore, W.E. Dietrich, R.M.E. Williams, D.M. Burr, J.A. Grant, S.A. Wilson, Y. Matsubara, Sedimentology and climatic environment of alluvial fans in the Martian Saheki Crater and a comparison with terrestrial fans in the Atacama Desert. Icarus 229, 131–156 (2014) ADSGoogle Scholar
  282. A.M. Morgan, S.A. Wilson, A.D. Howard, R.A. Craddock, J.A. Grant, Global distribution of alluvial fans and deltas on Mars, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 2219 Google Scholar
  283. S. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wiseman, K. Lichtenberg, J. Andrews-Hanna, J. Bishop, J.-P. Bibring, M. Parente, R. Morris, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114(E12), E00D05 (2009) Google Scholar
  284. J.F. Mustard, M. Adler, A. Allwood, D.S. Bass, D.W. Beaty, J.F. Bell III, W.B. Brinckerhoff, M. Carr, D.J. Des Marais, B. Drake, K.S. Edgett, J. Eigenbrode, L.T. Elkins-Tanton, J.A. Grant, S.M. Milkovich, D. Ming, C. Moore, S. Murchie, T.C. Onstott, S.W. Ruff, M.A. Sephton, A. Steele, A. Treiman, Report of the Mars 2020 Science Definition Team, 154, posted July, 2013, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf
  285. M. Nachon, N. Mangold, O. Forni, L.C. Kah, A. Cousin, R.C. Wiens, R. Anderson, D. Blaney, J.G. Blank, F. Calef, S.M. Clegg, C. Fabre, M.R. Fisk, O. Gasnault, J.P. Grotzinger, R. Kronyak, N.L. Lanza, J. Lasue, L. Le Deit, S. Le Mouélic, S. Maurice, P.-Y. Meslin, D.Z. Oehler, V. Payré, W. Rapin, S. Schröder, K. Stack, D. Sumner, Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale Crater, Mars. Icarus 281, 121–136 (2017).  https://doi.org/10.1016/j.icarus.2016.08.026 ADSCrossRefGoogle Scholar
  286. A.A. Nemchin, M. Humayun, M.J. Whitehouse et al., Record of the ancient Martian hydrosphere and atmosphere preserved in zircon from a Martian meteorite. Nat. Geosci. 7(9), 638–642 (2014) ADSGoogle Scholar
  287. B. Niles, J. Michalski, Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2(3), 215–220 (2009) ADSGoogle Scholar
  288. P.B. Niles, M.Y. Zolotov, L.A. Leshin, Insights into the formation of Fe- and Mg-rich aqueous solutions on early Mars provided by the ALH 84001 carbonates. Earth Planet. Sci. Lett. 286(1–2), 122–130 (2009) ADSGoogle Scholar
  289. P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. 174(1–4), 301–328 (2013) ADSGoogle Scholar
  290. B. Niles, J. Michalski, D.W. Ming, D.C. Golden, Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat. Commun. 8, 998 (2017) ADSGoogle Scholar
  291. A. Ody et al., Global investigation of olivine on Mars. J. Geophys. Res. 118, 234–262 (2013) Google Scholar
  292. C.H. Okubo, A.S. McEwen, Fracture-controlled paleo-fluid flow in Candor Chasma, Mars. Science 315(5814), 983 (2007) ADSGoogle Scholar
  293. A.A. Olsen, J.D. Rimstidt, Using a mineral lifetime diagram to evaluate the persistence of olivine on Mars. Am. Mineral. 92(4), 598–602 (2007) ADSGoogle Scholar
  294. T.C. Onstott, B.L. Ehlmann, H. Sapers, M. Coleman, M. Ivarsson, J.J. Marlow, A. Neubeck, P. Niles, Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration (2018). arXiv:1809.08266
  295. V. Orofino, G. Alemanno, G. Di Achille, F. Mancarella, Estimate of the water flow duration in large Martian fluvial systems. Planet. Space Sci. (2018).  https://doi.org/10.1016/j.pss.2018.06.001 CrossRefGoogle Scholar
  296. M.M. Osterloo, F.S. Anderson, V.E. Hamilton, B.M. Hynek, Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115(E10), E10012 (2010) ADSGoogle Scholar
  297. M.C. Palucis, W.E. Dietrich, A.G. Hayes, R.M.E. Williams, S. Gupta, N. Mangold, H. Newsom, C. Hardgrove, F. Calef, D.Y. Sumner, The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars. J. Geophys. Res., Planets 119(4), 705–728 (2014) ADSGoogle Scholar
  298. M.C. Palucis, W.E. Dietrich, R.M.E. Williams, A.G. Hayes, T. Parker, D.Y. Sumner, N. Mangold, K. Lewis, H. Newsom, Sequence and relative timing of large lakes in Gale Crater (Mars) after the formation of Mount Sharp. J. Geophys. Res., Planets 121(3), 472–496 (2016) ADSGoogle Scholar
  299. A.M. Palumbo, J.W. Head, Early Mars climate history: characterizing a “warm and wet” martian climate with a 3-D global climate model and testing geological predictions. Geophys. Res. Lett. 45, 10,249–10,258 (2018).  https://doi.org/10.1029/2018GL079767 CrossRefGoogle Scholar
  300. T.J. Parker, D.S. Gorsline, R.S. Saunders, D.C. Pieri, D.M. Schneeberger, Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98(E6), 11,061–11,078 (1993) ADSGoogle Scholar
  301. G. Parker, P. Wilcock, C. Paola, W.E. Dietrich, J. Pitlick, Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers. J. Geophys. Res., Earth Surf. 112(F4), F04005 (2007) ADSGoogle Scholar
  302. J.C. Penido, C.I. Fassett, S.M. Som, Scaling relationships and concavity of small valley networks on Mars. Planet. Space Sci. 75, 105–116 (2013) ADSGoogle Scholar
  303. T.S. Peretyazhko, B. Niles, B. Sutter, R.V. Morris, D.G. Agresti, L. Le, D.W. Ming, Smectite formation in the presence of sulfuric acid: implications for acidic smectite formation on early Mars. Geochim. Cosmochim. Acta 220, 248–260 (2018) ADSGoogle Scholar
  304. J.T. Perron, J.X. Mitrovica, M. Manga, I. Matsuyama, M.A. Richards, Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447(7146), 840–843 (2007) ADSGoogle Scholar
  305. G.H. Peters, E.M. Carey, R.C. Anderson, W.J. Abbey, R. Kinnett, J.A. Watkins, M. Schemel, M.O. Lashore, M.D. Chasek, W. Green, L.W. Beegle, A.R. Vasavada, Uniaxial compressive strengths of rocks drilled at Gale Crater, Mars. Geophys. Res. Lett. 45(1), 108–116 (2018) ADSGoogle Scholar
  306. R.C. Peterson, W. Nelson, B. Madu, H.F. Shurvell, Meridianiite: a new mineral species observed on Earth and predicted to exist on Mars. Am. Mineral. 92, 1756–1759 (2007) ADSGoogle Scholar
  307. A.M. Pfeiffer, N.J. Finnegan, J.K. Willenbring, Sediment supply controls equilibrium channel geometry in gravel rivers. Proc. Natl. Acad. Sci. 114(13), 3346–3351 (2017) ADSGoogle Scholar
  308. L.B.S. Pham, Ö. Karatekin, Scenarios of atmospheric mass evolution on Mars influenced by asteroid and comet impacts since the late Noachian. Planet. Space Sci. 125, 1–11 (2016) ADSGoogle Scholar
  309. R.J. Phillips, B.J. Davis, K.L. Tanaka et al., Massive CO2 ice deposits sequestered in the South polar layered deposits of Mars. Science 332, 838–841 (2011) ADSGoogle Scholar
  310. W.T. Pike, U. Staufer, M.H. Hecht, W. Goetz, D. Parrat, H. Sykulska-Lawrence, S. Vijendran, M.B. Madsen, Quantification of the dry history of the Martian soil inferred from in situ microscopy. Geophys. Res. Lett. 38(24), L24201 (2011) ADSGoogle Scholar
  311. J.T. Pitman et al., Remote sensing space science enabled by the multiple instrument distributed aperture sensor (MIDAS) concept, in Proceedings 5555, Instruments, Methods, and Missions for Astrobiology VIII, Optical Science and Technology, the SPIE 49th Annual Meeting 2004, Denver, Colorado, United States (2004).  https://doi.org/10.1117/12.560290 CrossRefGoogle Scholar
  312. J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987) ADSGoogle Scholar
  313. C. Quantin-Nataf, R.A. Craddock, F. Dubuffet, L. Lozac’h, M. Martinot, Decline of crater obliteration rates during early Martian history. Icarus 317, 427–433 (2019) ADSGoogle Scholar
  314. R.M. Ramirez, A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 297, 71–82 (2017) ADSGoogle Scholar
  315. R.M. Ramirez, R.A. Craddock, The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11(4), 230–237 (2018) ADSGoogle Scholar
  316. R.M. Ramirez, J.F. Kasting, Could cirrus clouds have warmed early Mars? Icarus 281, 248–261 (2017) ADSGoogle Scholar
  317. R.M. Ramirez, R. Kopparapu, M.E. Zugger, T.D. Robinson, R. Freedman, J.F. Kasting, Warming early Mars with CO2 and H2. Nat. Geosci. 7(1), 59–63 (2014) ADSGoogle Scholar
  318. E.B. Rampe, D.W. Ming, D.F. Blake, T.F. Bristow, S.J. Chipera, J.P. Grotzinger, R.V. Morris, S.M. Morrison, D.T. Vaniman, A.S. Yen, C.N. Achilles, P.I. Craig, D.J. Des Marais, R.T. Downs, J.D. Farmer, K.V. Fendrich, R. Gellert, R.M. Hazen, L.C. Kah, J.M. Morookian, T.S. Peretyazhko, P. Sarrazin, A.H. Treiman, J.A. Berger, J. Eigenbrode, A.G. Fairén, O. Forni, S. Gupta, J.A. Hurowitz, N.L. Lanza, M.E. Schmidt, K. Siebach, B. Sutter, L.M. Thompson, Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale Crater, Mars. Earth Planet. Sci. Lett. 471, 172–185 (2017) ADSGoogle Scholar
  319. R. Ramstad, S. Barabash, Y. Futaana, H. Nilsson, M. Holmström, Ion escape from mars through time: an extrapolation of atmospheric loss based on 10 years of Mars Express measurements. J. Geophys. Res., Planets 123, 3051–3060 (2018) ADSGoogle Scholar
  320. M.H. Reed, Hydrothermal alteration and its relationship to ore fluid composition, in Geochemistry of Hydrothermal Ore Deposits, vol. 3 (1997), pp. 303–365 Google Scholar
  321. F. Rivera-Hernandez, D.Y. Sumner, T.J. Mackey, I. Hawes, D.T. Andersen, In a PICL: the sedimentary deposits and facies of perennially ice-covered lakes. Sedimentology (2018).  https://doi.org/10.1111/sed.12522 CrossRefGoogle Scholar
  322. S.J. Robbins, New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014) ADSGoogle Scholar
  323. S.J. Robbins, B.M. Hynek, R.J. Lillis, W.F. Bottke, Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225(1), 173–184 (2013) ADSGoogle Scholar
  324. S.J. Robbins et al., Revised recommended methods for analyzing crater size-frequency distributions. Meteorit. Planet. Sci. 53, 891–931 (2018) ADSGoogle Scholar
  325. J.A.P. Rodriguez, A.G. Fairén, K.L. Tanaka, M. Zarroca, R. Linares, T. Platz, G. Komatsu, H. Miyamoto, J.S. Kargel, J. Yan, V. Gulick, K. Higuchi, V.R. Baker, N. Glines, Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Sci. Rep. 6, 25106 (2016) ADSGoogle Scholar
  326. E.N. Rosenberg, J.W. Head III, Late Noachian fluvial erosion on Mars: cumulative water s required to carve the valley networks and grain size of bed-sediment. Planet. Space Sci. 117, 429–435 (2015) ADSGoogle Scholar
  327. E.N. Rosenberg, A.M. Palumbo, J.P. Cassanelli, J.W. Head, D.K. Weiss, Icarus 317, 379–387 (2019) ADSGoogle Scholar
  328. S.W. Ruff, V.E. Hamilton, Wishstone to watchtower: amorphous alteration of plagioclase-rich rocks in Gusev Crater, Mars. Am. Mineral. 102(2), 235–251 (2017) ADSGoogle Scholar
  329. S.W. Ruff, P.B. Niles, F. Alfano, A.B. Clarke, Evidence for a Noachian-aged ephemeral lake in Gusev Crater, Mars. Geology 42(4), 359–362 (2014) ADSGoogle Scholar
  330. M.R. Salvatore, R. Christensen, On the origin of the Vastitas Borealis formation in Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. 119, 2437–2456 (2014).  https://doi.org/10.1029/2014JE004682 CrossRefGoogle Scholar
  331. M.R. Salvatore, J.F. Mustard, J.W. Head, A.D. Rogers, R.F. Cooper, The dominance of cold and dry alteration processes on recent Mars, as revealed through pan-spectral orbital analyses. Earth Planet. Sci. Lett. 404, 261–272 (2014) ADSGoogle Scholar
  332. K.E. Scanlon, J.W. Head III, J.L. Fastook, R.D. Wordsworth, The Dorsa Argentea formation and the Noachian-Hesperian climate transition. Icarus 299, 339–363 (2018) ADSGoogle Scholar
  333. J.M. Scheidegger, V.F. Bense, Impacts of glacially recharged groundwater flow systems on talik evolution. J. Geophys. Res., Earth Surf. 119(4), 758–778 (2014) ADSGoogle Scholar
  334. J. Schieber, D. Bish, M. Coleman, M. Reed, E.M. Hausrath, J. Cosgrove, S. Gupta, M.E. Minitti, K.S. Edgett, M. Malin, Encounters with an unearthly mudstone: understanding the first mudstone found on Mars. Sedimentology 64(2), 311–358 (2017) Google Scholar
  335. T.L. Segura, O.B. Toon, A. Colaprete, Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113(E11), E11007 (2008) ADSGoogle Scholar
  336. T.L. Segura, K. Zahnle, O.B. Toon, C.P. McKay, The effects of impacts on the climates of terrestrial planets, in Comparative Climatology of Terrestrial Planets, vol. 610, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 417–437 Google Scholar
  337. R. Shaheen, B. Niles, K. Chong et al., Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. Proc. Natl. Acad. Sci. 112, 336–341 (2015) ADSGoogle Scholar
  338. K.L. Siebach, J.P. Grotzinger, L.C. Kah, K.M. Stack, M. Malin, R. Léveillé, D.Y. Sumner, Subaqueous shrinkage cracks in the Sheepbed mudstone: implications for early fluid diagenesis, Gale Crater, Mars. J. Geophys. Res., Planets 119(7), 1597–1613 (2014) ADSGoogle Scholar
  339. K.L. Siebach, M.B. Baker, J.P. Grotzinger, S.M. McLennan, R. Gellert, L.M. Thompson, J.A. Hurowitz, Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale Crater, Mars. J. Geophys. Res., Planets 122(2), 295–328 (2017) ADSGoogle Scholar
  340. M.D. Smith, The annual cycle of water vapor as observed by the thermal emission spectrometer. J. Geophys. Res. 107, 1–19 (2002).  https://doi.org/10.1029/2001JE001522 ADSCrossRefGoogle Scholar
  341. D.E. Smith, M.T. Zuber, S.C. Solomon, R.J. Phillips, J.W. Head, J.B. Garvin, W.B. Banerdt, D.O. Muhleman, G.H. Pettengill, G.A. Neumann et al., The global topography of Mars and implications for surface evolution. Science 284, Iss. 5419, 1495 (1999) Google Scholar
  342. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23689–23722 (2001) ADSGoogle Scholar
  343. S.M. Som, D.R. Montgomery, H.M. Greenberg, Scaling relations for large Martian valleys. J. Geophys. Res. 114(E2), E02005 (2009) ADSGoogle Scholar
  344. A. Soto, M. Mischna, T. Schneider, C. Lee, M.I. Richardson, Martian atmospheric collapse: idealized GCM studies. Icarus 250, 553–569 (2015) ADSGoogle Scholar
  345. S.W. Squyres, Urey prize lecture—water on Mars. Icarus 79, 229–288 (1989) ADSGoogle Scholar
  346. S.W. Squyres, R.E. Arvidson, D.L. Blaney, B.C. Clark, L. Crumpler, W.H. Farrand, S. Gorevan, K.E. Herkenhoff, J. Hurowitz, A. Kusack, H.Y. McSween, D.W. Ming, R.V. Morris, S.W. Ruff, A. Wang, A. Yen, Rocks of the Columbia Hills. J. Geophys. Res. 111, E2, E02S11 (2006) Google Scholar
  347. S.W. Squyres, R.E. Arvidson, S. Ruff, R. Gellert, R.V. Morris, D.W. Ming, L. Crumpler, J.D. Farmer, D.J. Des Marais, A. Yen, S.M. McLennan, W. Calvin, J.F. Bell, B.C. Clark, A. Wang, T.J. McCoy, M.E. Schmidt, P.A. de Souza, Detection of silica-rich deposits on Mars. Science 320(5879), 1063 (2008) ADSGoogle Scholar
  348. S.W. Squyres, A.H. Knoll, R.E. Arvidson, J.W. Ashley, J.F. Bell, W.M. Calvin, P.R. Christensen, B.C. Clark, B.A. Cohen, P.A. de Souza, L. Edgar, W.H. Farrand, I. Fleischer, R. Gellert, M.P. Golombek, J. Grant, J. Grotzinger, A. Hayes, K.E. Herkenhoff, J.R. Johnson, B. Jolliff, G. Klingelhöfer, A. Knudson, R. Li, T.J. McCoy, S.M. McLennan, D.W. Ming, D.W. Mittlefehldt, R.V. Morris, J.W. Rice, C. Schröder, R.J. Sullivan, A. Yen, R.A. Yingst, Exploration of Victoria Crater by the Mars Rover Opportunity. Science 324(5930), 1058 (2009) ADSGoogle Scholar
  349. K.M. Stack, C.S. Edwards, J.P. Grotzinger, S. Gupta, D.Y. Sumner, F.J. Calef, L.A. Edgar, K.S. Edgett, A.A. Fraeman, S.R. Jacob, L. Le Deit, K.W. Lewis, M.S. Rice, D. Rubin, R.M.E. Williams, K.H. Williford, Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars. Icarus 280, 3–21 (2016) ADSGoogle Scholar
  350. K.E. Steakley, M.A. Kahre, J.R. Murphy, R.M. Haberle, A. Kling, Revisiting the impact heating hypothesis for early Mars with a 3D GCM, in Fourth International Conference on Early Mars, Proceedings of the Conference, 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014 (2017), p. 3074 Google Scholar
  351. L. Steele, E.S. Kite, T.I. Michaels, Crater mound formation by wind erosion on Mars. J. Geophys. Res., Planets 123, 113–130 (2018) ADSGoogle Scholar
  352. N. Stein, J.P. Grotzinger, J. Schieber, N. Mangold, B. Hallet, H. Newsom, K.M. Stack, J.A. Berger, L. Thompson, K.L. Siebach, A. Cousin, S. Le Mouélic, M. Minitti, D.Y. Sumner, C. Fedo, C.H. House, S. Gupta, A.R. Vasavada, R. Gellert, R.C. Wiens, J. Frydenvang, O. Forni, P.Y.M.V. Payré, E. Dehouck, Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater. Geology 46(6), 515–518 (2018) ADSGoogle Scholar
  353. J.D. Stopar, G.J. Taylor, V.E. Hamilton, L. Browning, Kinetic model of olivine dissolution and extent of aqueous alteration on Mars. Geochim. Cosmochim. Acta 70(24), 6136–6152 (2006) ADSGoogle Scholar
  354. T. Swindle, A. Treiman, D. Lindstrom, M. Burkland, B. Cohen, J. Grier, B. Li, E. Olson, Noble gases in iddingsite from the lafayette meteorite: evidence for liquid water on Mars in the last few hundred million years. Meteorit. Planet. Sci. 35(1), 107–115 (2000) ADSGoogle Scholar
  355. K.L. Tanaka, S.J. Robbins, C.M. Fortezzo, J.A. Skinner, T.M. Hare, The digital global geologic map of Mars. Planet. Space Sci. 95, 11–24 (2014) ADSGoogle Scholar
  356. S.R. Taylor, S. McLennan, Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009) Google Scholar
  357. G.J. Taylor et al., Causes of variations in K/Th on Mars. J. Geophys. Res. 111, E03S06 (2006).  https://doi.org/10.1029/2006JE002676 CrossRefGoogle Scholar
  358. L.M. Thompson, M.E. Schmidt, J.G. Spray, J.A. Berger, A.G. Fairén, J.L. Campbell, G.M. Perrett, N. Boyd, R. Gellert, I. Pradler, S.J. VanBommel, Potassium-rich sandstones within the Gale impact crater, Mars: the APXS perspective. J. Geophys. Res., Planets 121(10), 1981–2003 (2016) ADSGoogle Scholar
  359. B.J. Thomson, N.T. Bridges, J. Cohen, J.A. Hurowitz, A. Lennon, G. Paulsen, K. Zacny, Estimating rock compressive strength from Rock Abrasion Tool (RAT) grinds. J. Geophys. Res., Planets 118(6), 1233–1244 (2013) ADSGoogle Scholar
  360. F. Tian, M.W. Claire, J.D. Haqq-Misra, M. Smith, D.C. Crisp, D. Catling, K. Zahnle, J.F. Kasting, Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010) ADSGoogle Scholar
  361. J.D. Toner, D.C. Catling, R.S. Sletten, The geochemistry of Don Juan Pond: evidence for a deep groundwater flow system in Wright Valley, Antarctica. Earth Planet. Sci. Lett. 474, 190–197 (2017) ADSGoogle Scholar
  362. O.B. Toon, J.B. Pollack, W. Ward, J.A. Burns, K. Bilski, The astronomical theory of climatic change on Mars. Icarus 44(3), 552–607 (1980).  https://doi.org/10.1016/0019-1035(80)90130-X ADSCrossRefGoogle Scholar
  363. O.B. Toon, T. Segura, K. Zahnle, The formation of Martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38, 303–322 (2010) ADSGoogle Scholar
  364. N.J. Tosca, A.H. Knoll, Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286(3–4), 379–386 (2009) ADSGoogle Scholar
  365. N.J. Tosca, A.H. Knoll, S.M. McLennan, Water activity and the challenge for life on early Mars. Science 320(5880), 1204 (2008) ADSGoogle Scholar
  366. N.J. Tosca, I.A.M. Ahmed, B.M. Tutolo, A. Ashpitel, J.A. Hurowitz, Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018) ADSGoogle Scholar
  367. N.J. Tosca, I.A.M. Ahmed, B.M. Tutolo, A. Ashpitel, J.A. Hurowitz, Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 11, 635–639 (2018) ADSGoogle Scholar
  368. M. Turbet, H. Tran, Comment on “Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars”. J. Geophys. Res., Planets 122(11), 2362–2365 (2017) ADSGoogle Scholar
  369. M. Turbet, J. Leconte, F. Selsis, E. Bolmont, F. Forget, I. Ribas, S.N. Raymond, G. Anglada-Escudé, The habitability of Proxima Centauri b. II. Possible climates and observability. Astron. Astrophys. 596, A112 (2016) ADSGoogle Scholar
  370. M. Turbet, F. Forget, V. Svetsov, H. Tran, J.-M. Hartmann, O. Karatekin, C. Gillmann, O. Popova, J. Head, The environmental effect of meteoritic impacts on early Mars with a versatile 3-D global climate model, in Fourth International Conference on Early Mars, Proceedings of the Conference, 2–6 October, 2017, Flagstaff, Arizona. LPI Contribution, vol. 2014, (2017a), p. 3062 Google Scholar
  371. M. Turbet, F. Forget, J.W. Head, R. Wordsworth, 3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus 288, 10–36 (2017b) ADSGoogle Scholar
  372. R.A. Urata, O.B. Toon, Simulations of the Martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate. Icarus 226(1), 229–250 (2013) ADSGoogle Scholar
  373. W. Van Berk, Y. Fu, J-M. Ilger, Reproducing early Martian atmospheric carbon dioxide partial pressure by modeling the formation of Mg–Fe–Ca carbonate identified in the Comanche rock outcrops on Mars. J. Geophys. Res. 117, E10008 (2012) Google Scholar
  374. D.T. Vaniman, G.M. MartÃ-nez, E.B. Rampe, T.F. Bristow, D.F. Blake, A.S. Yen, D.W. Ming, W. Rapin, P.-Y. Meslin, J.M. Morookian, R.T. Downs, S.J. Chipera, R.V. Morris, S.M. Morrison, A.H. Treiman, C.H. Achilles, K. Robertson, J.P. Grotzinger, R.M. Hazen, R.C. Wiens, D.Y. Sumner, Gypsum, basanite, and anhydrite at Gale Crater, Mars. Am. Mineral. 103(7), 1011–1020 (2018).  https://doi.org/10.2138/am-2018-6346 ADSCrossRefGoogle Scholar
  375. A.R. Vasavada, Our changing view of Mars. Phys. Today 70(3), 34–41 (2017) Google Scholar
  376. A.R. Vasavada, T.J. Milavec, D.A. Paige, Microcraters on Mars—evidence for past climate variations. J. Geophys. Res. 98(E2), 3469–3476 (1993) ADSGoogle Scholar
  377. P. von Paris, A. Petau, J.L. Grenfell, E. Hauber, D. Breuer, R. Jaumann, H. Rauer, D. Tirsch, Estimating precipitation on early Mars using a radiative-convective model of the atmosphere and comparison with inferred runoff from geomorphology. Planet. Space Sci. 105, 133–147 (2015) ADSGoogle Scholar
  378. A. Wang, L.A. Haskin, S.W. Squyres, B.L. Jolliff, L. Crumpler, R. Gellert, C. Schröder, K. Herkenhoff, J. Hurowitz, N.J. Tosca, W.H. Farrand, R. Anderson, A.T. Knudson, Sulfate deposition in subsurface regolith in Gusev Crater, Mars. J. Geophys. Res. 111, E2, E02S17 (2006) Google Scholar
  379. A. Wang, B.L. Jolliff, Y. Liu, K. Connor, Setting constraints on the nature and origin of the two major hydrous sulfates on Mars: monohydrated and polyhydrated sulfates. J. Geophys. Res., Planets 121, 678–694 (2016) ADSGoogle Scholar
  380. M.K. Ward, W.H. Pollard, A hydrohalite spring deposit in the Canadian high Arctic: a potential Mars analogue. Earth Planet. Sci. Lett. 504, 126–138 (2018) ADSGoogle Scholar
  381. N.H. Warner, M. Sowe, S. Gupta et al., Fill and spill of giant lakes in the eastern Valles Marineris region of Mars. Geology 41, 675–678 (2013) ADSGoogle Scholar
  382. N.H. Warner, S. Gupta, F. Calef, P. Grindrod, N. Boll, K. Goddard, Minimum effective area for high resolution crater counting of Martian terrains. Icarus 245, 198–240 (2015) ADSGoogle Scholar
  383. C.R. Webster, R. Mahaffy, G.J. Flesch et al., Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341(6143), 260–263 (2013) ADSGoogle Scholar
  384. B.P. Weiss, J.L. Kirschvink, F.J. Baudenbacher, H. Vali, N.T. Peters, F.A. Macdonald, J.P. Wikswo, A low temperature transfer of ALH84001 from Mars to Earth. Science 290(5492), 791–795 (2000) ADSGoogle Scholar
  385. B.P. Weiss, E. Scheller, Z. Gallegos, B.L. Ehlmann, N. Lanza, H. Newsom, Megabreccia at Northeast Syrtis major and its importance for Mars science, in 49th Lunar and Planetary Science Conference, 19–23 March, 2018, The Woodlands, Texas. LPI Contribution, vol. 2083 (2018), p. 1385 Google Scholar
  386. C.M. Weitz, R.E. Milliken, J.A. Grant, A.S. McEwen, R.M.E. Williams, J.L. Bishop, B.J. Thomson, Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus 205, 73–102 (2010) ADSGoogle Scholar
  387. F. Westall, F. Foucher, N. Bost, M. Bertrand, D. Loizeau, J.L. Vago, G. Kminek, G. Frédéric, K.A. Campbell, J.-G. Bréhéret, P. Gautret, C.S. Cockell, Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15(11), 998–1029 (2015) ADSGoogle Scholar
  388. K.X. Whipple, N.P. Snyder, K. Dollenmayer, Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska. Geology 28(9), 835 (2000) ADSGoogle Scholar
  389. R.M.E. Williams, M.C. Malin, Sub-kilometer fans in Mojave Crater, Mars. Icarus 198(2), 365–383 (2008) ADSGoogle Scholar
  390. R.M.E. Williams, R.J. Phillips, Morphometric measurements of Martian valley networks from Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106(E10), 23737–23752 (2001) ADSGoogle Scholar
  391. R.M.E. Williams, C.M. Weitz, Reconstructing the aqueous history within the southwestern Melas basin, Mars: clues from stratigraphic and morphometric analyses of fans. Icarus 242, 19–37 (2014) ADSGoogle Scholar
  392. K.E. Williams, O.B. Toon, J.L. Heldmann, M.T. Mellon, Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies. Icarus 200(2), 418–425 (2009) ADSGoogle Scholar
  393. R.M.E. Williams, D.A. Rogers, M. Chojnacki, J. Boyce, K.D. Seelos, C. Hardgrove, F. Chuang, Evidence for episodic alluvial fan formation in far western Terra Tyrrhena, Mars. Icarus 211, 222–237 (2011) ADSGoogle Scholar
  394. R.M.E. Williams, J.P. Grotzinger, W.E. Dietrich, S. Gupta, D.Y. Sumner, R.C. Wiens, N. Mangold, M.C. Malin, K.S. Edgett et al., Martian fluvial conglomerates at Gale Crater. Science 340(6136), 1068–1072 (2013) ADSGoogle Scholar
  395. J.-P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014) ADSGoogle Scholar
  396. R.M.E. Williams, F.C. Chuang, D.C. Berman, Multiple surface wetting events in the greater Meridiani Planum region, Mars: evidence from valley networks within ancient cratered highlands. Geophys. Res. Lett. 44(4), 1669–1678 (2017) ADSGoogle Scholar
  397. R.M.E. Williams, M.C. Malin, K.M. Stack, D.M. Rubin, Assessment of Aeolis Palus stratigraphic relationships based on bench-forming strata in the Kylie and the Kimberley regions of Gale Crater, Mars. Icarus 309, 84–104 (2018) ADSGoogle Scholar
  398. S.A. Wilson, A.D. Howard, J.M. Moore, J.A. Grant, A cold-wet middle-latitude environment on Mars during the Hesperian-Amazonian transition: evidence from northern Arabia valleys and paleolakes. J. Geophys. Res., Planets 121, 1667–1694 (2016) ADSGoogle Scholar
  399. M.-K. Woo, Permafrost Hydrology (Springer, Berlin, 2012) Google Scholar
  400. R.D. Wordsworth, The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016) ADSGoogle Scholar
  401. R. Wordsworth, F. Forget, E. Millour, J.W. Head, J.-B. Madeleine, B. Charnay, Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013) ADSGoogle Scholar
  402. R.D. Wordsworth, L. Kerber, R.T. Pierrehumbert, F. Forget, J.W. Head, Comparison of ”warm and wet” and ”cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res., Planets 120(6), 1201–1219 (2015) ADSGoogle Scholar
  403. R. Wordsworth, Y. Kalugina, S. Lokshtanov, A. Vigasin, B. Ehlmann, J. Head, C. Sanders, H. Wang, Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44(2), 665–671 (2017) ADSGoogle Scholar
  404. J.J. Wray, S.L. Murchie, J.L. Bishop, B.L. Ehlmann, R.E. Milliken, M.B. Wilhelm, K.D. Seelos, M. Chojnacki, Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res., Planets 121(4), 652–677 (2016) ADSGoogle Scholar
  405. A.S. Yen, R. Gellert, C. Schröder, R.V. Morris, J.F. Bell, A.T. Knudson, B.C. Clark, D.W. Ming, J.A. Crisp, R.E. Arvidson et al., An integrated view of the chemistry and mineralogy of Martian soils. Nature 436(7047), 49–54 (2005) ADSGoogle Scholar
  406. A.S. Yen, D.W. Ming, D.T. Vaniman, R. Gellert, D.F. Blake, R.V. Morris, S.M. Morrison, T.F. Bristow, S.J. Chipera, K.S. Edgett, A.H. Treiman, B.C. Clark, R.T. Downs, J.D. Farmer, J.P. Grotzinger, E.B. Rampe, M.E. Schmidt, B. Sutter, L.M. Thompson (MSL Science Team), Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. Earth Planet. Sci. Lett. 471, 186–198 (2017) ADSGoogle Scholar
  407. K. Zabrusky, J.C. Andrews-Hanna, S.M. Wiseman, Reconstructing the distribution and depositional history of the sedimentary deposits of arabia terra, Mars. Icarus 220(2), 311–330 (2012) ADSGoogle Scholar
  408. J.R. Zimbelman, S.P. Scheidt, Hesperian age for Western Medusae fossae formation, Mars. Science 336(6089), 1683 (2012) ADSGoogle Scholar
  409. M.Y. Zolotov, M.V. Mironenko, Timing of acid weathering on Mars: a kinetic-thermodynamic assessment. J. Geophys. Res. 112(E7), E07006 (2007) ADSGoogle Scholar
  410. M.Y. Zolotov, M.V. Mironenko, Chemical models for Martian weathering profiles: insights into formation of layered phyllosilicate and sulfate deposits. Icarus 275, 203–220 (2016) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of ChicagoChicagoUSA

Personalised recommendations