Space Science Reviews

, Volume 211, Issue 1–4, pp 457–483 | Cite as

Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission

  • Naomi MurdochEmail author
  • Balthasar Kenda
  • Taichi Kawamura
  • Aymeric Spiga
  • Philippe Lognonné
  • David Mimoun
  • William B. Banerdt


The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells, Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically \(\sim 2 \mbox{--} 40~\mbox{nm}/\mbox{s}^{2}\) in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be \(\sim 0.1\mbox{--}6~\mbox{nm}/\mbox{s}^{2}\) in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.

We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.

In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of \(\sim 5\) in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission.


Mars Seismology Pressure Atmosphere Regolith Geophysics 



This work has been supported by CNES and by ANR SEISMARS, including post-doctoral support provided to N. Murdoch and to T. Kawamura. B. Kenda acknowledges the support of the ED560 STEP’UP and of the NASA InSight project for his PhD support. This paper is InSight contribution 23.


  1. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksoz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977). doi: 10.1029/JS082i028p04524 ADSCrossRefGoogle Scholar
  2. R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am. 86(6), 1760–1769 (1996). Google Scholar
  3. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.C. Dupla, S. Keddar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0339-7 Google Scholar
  4. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi: 10.1016/j.icarus.2008.07.003 ADSCrossRefGoogle Scholar
  5. JPL and InSight Science Team, InSight environmental requirements document. JPL D-75253 (2013) Google Scholar
  6. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R.D. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian Dust Devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2017, submitted for publication) Google Scholar
  7. M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res., Planets 111, 11006 (2006). doi: 10.1029/2006JE002708 ADSCrossRefGoogle Scholar
  8. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn., A Course of Theoretical Physics, vol. 7 (Pergamon, New York, 1970) zbMATHGoogle Scholar
  9. P. Lognonné, C.L. Johnson, Planet. Seismol. 10(4) (2007) Google Scholar
  10. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993). doi: 10.1007/BF00690946 ADSCrossRefGoogle Scholar
  11. P. Lognonné, T. Pike, in Planetary Seismometry, ed. by V.C.H. Tong, R.A. Garcia (Cambridge Univ. Press, Cambridge, 2015) CrossRefGoogle Scholar
  12. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Intermarsnet ultra broad band seismology on intermarsnet. Planet. Space Sci. 44(11), 1237–1249 (1996). doi: 10.1016/S0032-0633(96)00083-9 ADSCrossRefGoogle Scholar
  13. P. Lognonné, V.N. Zharkov, J.F. Karczewski, B. Romanowicz, M. Menvielle, G. Poupinet, B. Brient, C. Cavoit, A. Desautez, B. Dole, D. Franqueville, J. Gagnepain-Beyneix, H. Richard, P. Schibler, N. Striebig, The seismic OPTIMISM experiment. Planet. Space Sci. 46, 739–747 (1998). doi: 10.1016/S0032-0633(98)00009-9 ADSCrossRefGoogle Scholar
  14. P. Lognonné, D. Giardini, B. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J.F. Karczewski, P. Schibler, S. Cacho, W.T. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J.J. Lévéque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000). doi: 10.1016/S0032-0633(00)00110-0 ADSCrossRefGoogle Scholar
  15. P. Lognonne, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43, 2012, p. 1983 Google Scholar
  16. R.D. Lorenz, Planetary seismology—expectations for lander and wind noise with application to Venus. Planet. Space Sci. 62, 86–96 (2012). doi: 10.1016/j.pss.2011.12.010 ADSCrossRefGoogle Scholar
  17. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W. Bruce Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. 105, 3015–3023 (2015). doi: 10.1785/0120150133 CrossRefGoogle Scholar
  18. I.T. Michaels, S.C.R. Rafkin, Large-eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi: 10.1256/qj.02.169 ADSCrossRefGoogle Scholar
  19. T. Mikumo, S. Watada, in Acoustic-Gravity Waves from Earthquake Sources, ed. by A. Le Pichon, E. Blanc, A. Hauchecorne (Springer, Dordrecht, 2009), pp. 263–279. ISBN 978-1-4020-9508-5 Google Scholar
  20. E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean, MCD/GCM development Team, The Mars climate database (MCD version 5.2), in European Planetary Science Congress 2015, vol. 10 (2015) p. 2438 Google Scholar
  21. D. Mimoun, P. Lognonné, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nébut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS experiment, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43, 2012, p. 1493 Google Scholar
  22. D. Mimoun, N. Murdoch, P. Lognonné, T. Pike, K. Hurst, The SEIS Team, The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2017, submitted for publication) Google Scholar
  23. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0311-y Google Scholar
  24. Y. Nishikawa, A. Araya, K. Kurita, N. Kobayashi, T. Kawamura, Designing a torque-less wind shield for broadband observation of marsquakes. Planet. Space Sci. 104, 288–294 (2014). doi: 10.1016/j.pss.2014.10.011 ADSCrossRefGoogle Scholar
  25. Y. Nishikawa, P. Lognonne, A. Spiga, K. Kurita, Evaluation of Mars’ background free oscillations with Martian general circulation model. Implications for detection of the InSIGHT mission. Space Sci. Rev. (2017, submitted for publication) Google Scholar
  26. G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. Int. 26, 71–82 (1971). doi: 10.1111/j.1365-246X.1971.tb03383.x ADSCrossRefGoogle Scholar
  27. G.G. Sorrells, J.A. McDonald, E.T. Herrin, Ground motions associated with acoustic waves. Nat. Phys. Sci. 229, 14–16 (1971). doi: 10.1038/physci229014a0 ADSCrossRefGoogle Scholar
  28. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, 02009 (2009). doi: 10.1029/2008JE003242 ADSCrossRefGoogle Scholar
  29. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010) ADSCrossRefGoogle Scholar
  30. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003). doi: 10.1016/S0019-1035(02)00045-3 ADSCrossRefGoogle Scholar
  31. W. Zurn, R. Widmer, On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett. 22(24), 3537–3540 (1995). doi: 10.1029/95GL03369 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Naomi Murdoch
    • 1
    Email author
  • Balthasar Kenda
    • 2
  • Taichi Kawamura
    • 2
  • Aymeric Spiga
    • 3
  • Philippe Lognonné
    • 2
  • David Mimoun
    • 1
  • William B. Banerdt
    • 4
  1. 1.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouse Cedex 4France
  2. 2.Institut de Physique du Globe de Paris-Sorbonne Paris CitéUniversité Paris DiderotParisFrance
  3. 3.Laboratoire de Météorologie Dynamique, UMR CNRS 8539, Institut Pierre-Simon Laplace, Sorbonne UniversitésUPMC Univ. Paris 06ParisFrance
  4. 4.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations