Skip to main content
Log in

Galaxy Alignments: An Overview

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. For an alternative formation hypothesis of spheroids involving cold gas streams, which is also closely linked to alignments with the surrounding dark matter and gas distribution, see e.g. Dekel et al. (2009).

  2. There is a subtlety involved in this approximation: for an individual galaxy, as Eq. (2) has been written, the expansion produces another term that is first order in the shear and proportional to \(g^{*} (\epsilon^{\mathrm{s}})^{2}\). However, since the relation is only considered in practice when averaging over large numbers of galaxies, this term (as well as all higher-order terms) becomes negligible if the intrinsic galaxy shapes are uncorrelated, or only weakly correlated, with the shear acting on them.

  3. The minus sign in these definitions ensures that the tangential alignment of shear around an object yields a positive signal. As a caveat, measurements of galaxy alignments tend to omit the minus sign in related statistics because in this situation the generally expected radial alignment is desired to yield a positive signal.

  4. Note that even for a non-tomographic cosmic shear analysis the overall redshift distribution of source galaxies is needed, although the requirements on accuracy and precision are less stringent in this case.

  5. An aside on nomenclature: galaxy alignments often receive the attribute ‘intrinsic’, especially if the physical alignments inherent to the galaxy population need to be distinguished from the apparent alignments on galaxy images induced by gravitational lensing (occasionally denoted as ‘extrinsic’; see Catelan et al. 2001). The term is also applied in a slightly different context to distinguish between the physical three-dimensional shape of a galaxy and its projected shape we observe on the sky (see Sandage et al. 1970 for the earliest occurence that we could trace).

  6. As we will discuss later, this model describes the observed galaxy alignments of bright early-type galaxies rather well, including its redshift evolution, albeit within large error bars (see also Kirk et al. 2015). This is somewhat puzzling because these galaxies are thought to have been created only recently (typically at redshifts below two) by major mergers, disruptive events that one would naively expect to erase all memory of alignment processes during galaxy formation. Hence, the assumptions underlying Eq. (14) may not be fully valid, but it could be that any modifications would primarily affect the amplitude of the predicted correlations, which is unconstrained by the model anyway.

  7. These sizes are difficult to relate to modern measurements such as the half-light radius, but it is enough to consider that these are 23 of the largest galaxies, in apparent size, that there are.

  8. http://aps.umn.edu/ .

  9. Efstathiou (2003) provides an excellent description of the conference proceedings in which Hoyle first proposed his theory. In fact, as highlighted by Efstathiou (2003), Hoyle makes a remarkably prescient statement in a later work (Hoyle 1966) that ‘‘the properties of the individual stars that make up the galaxies form the classical study of astrophysics, while the phenomena of galaxy formation touches on cosmology. In fact, the study of galaxies forms a bridge between conventional astronomy and astrophysics on the one hand, and cosmology on the other.’’

  10. Constraints on potential misalignments could in principle also be obtained from halo shape measurements via galaxy-galaxy lensing, stacking galaxies and orienting them with respect to their major axes (Hoekstra et al. 2004; Mandelbaum et al. 2006b; van Uitert et al. 2012; Adhikari et al. 2015).

  11. In hindsight this nomenclature is unfortunate, since Sastry’s observation took place before that of Holmberg.

  12. Including the Kilo Degree Survey, http://kids.strw.leidenuniv.nl ; the Dark Energy Survey, http://www.darkenergysurvey.org ; and the Hyper Suprime-Cam Survey, http://www.naoj.org/Projects/HSC .

  13. Including the Large Synoptic Survey Telescope (Abell et al. 2009), http://www.lsst.org/lsst ; the ESA Euclid satellite (Laureijs et al. 2011), http://sci.esa.int/euclid and http://www.euclid-ec.org ; and the NASA Wide-Field Infrared Survey Telescope (WFIRST, Spergel et al. 2013), http://wfirst.gsfc.nasa.gov .

  14. For instance with the Dark Energy Spectroscopic Instrument, http://desi.lbl.gov/cdr ; the Subaru Prime Focus Spectrograph http://sumire.ipmu.jp/pfs ; as well as Euclid and WFIRST.

  15. Such as PRIMUS, http://primus.ucsd.edu ; PAU, http://www.ieec.cat/project/pau-physics-of-the-accelerating-universe ; J-PAS, http://j-pas.org ; and (limited to bright galaxies) the proposed SPHEREx mission, http://spherex.caltech.edu , which employs filters with spatially varying response.

  16. https://www.skatelescope.org .

References

  • P.A. Abell, J. Allison, S.F. Anderson, J.R. Andrew, J.R.P. Angel, L. Armus, D. Arnett, S.J. Asztalos, T.S. Axelrod, et al. (LSST Science Collaboration), LSST science book, version 2.0. ArXiv e-prints (2009)

  • P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, J.G. Bartlett, et al. (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters. ArXiv e-prints (2015a)

  • P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, R. Barrena, et al. (Planck Collaboration), Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. ArXiv e-prints (2015b)

  • S. Adhikari, C.Y.R. Chue, N. Dalal, Three-point galaxy-galaxy lensing as a probe of dark matter halo shapes. J. Cosmol. Astropart. Phys. 1, 9 (2015). doi:10.1088/1475-7516/2015/01/009

    Article  MathSciNet  ADS  Google Scholar 

  • I. Agustsson, T.G. Brainerd, Anisotropic locations of satellite galaxies: clues to the orientations of galaxies within their dark matter halos. Astrophys. J. 709, 1321–1336 (2010). doi:10.1088/0004-637X/709/2/1321

    Article  ADS  Google Scholar 

  • A. Albrecht, G. Bernstein, R. Cahn, W.L. Freedman, J. Hewitt, W. Hu, J. Huth, M. Kamionkowski, E.W. Kolb, L. Knox, J.C. Mather, S. Staggs, N.B. Suntzeff, Report of the dark energy task force. ArXiv Astrophysics e-prints (2006)

  • M. Alpaslan, A.S.G. Robotham, S. Driver, P. Norberg, I. Baldry, A.E. Bauer, J. Bland-Hawthorn, M. Brown, M. Cluver, M. Colless, C. Foster, A. Hopkins, E. Van Kampen, L. Kelvin, M.A. Lara-Lopez, J. Liske, A.R. Lopez-Sanchez, J. Loveday, T. McNaught-Roberts, A. Merson, K. Pimbblet, Galaxy And Mass Assembly (GAMA): the large-scale structure of galaxies and comparison to mock universes. Mon. Not. R. Astron. Soc. 438, 177–194 (2014). doi:10.1093/mnras/stt2136

    Article  ADS  Google Scholar 

  • G. Altay, J.M. Colberg, R.A.C. Croft, The influence of large-scale structures on halo shapes and alignments. Mon. Not. R. Astron. Soc. 370, 1422–1428 (2006). doi:10.1111/j.1365-2966.2006.10555.x

    Article  ADS  Google Scholar 

  • A. Amara, A. Réfrégier, Systematic bias in cosmic shear: extending the Fisher matrix. Mon. Not. R. Astron. Soc. 391, 228–236 (2008). doi:10.1111/j.1365-2966.2008.13880.x

    Article  ADS  Google Scholar 

  • C. Angrick, Ellipticity and prolaticity of the initial gravitational-shear field at the position of density maxima. Mon. Not. R. Astron. Soc. 443, 2361–2371 (2014). doi:10.1093/mnras/stu1272

    Article  ADS  Google Scholar 

  • M.A. Aragon-Calvo, L.F. Yang, The hierarchical nature of the spin alignment of dark matter haloes in filaments. Mon. Not. R. Astron. Soc. 440, 46–50 (2014). doi:10.1093/mnrasl/slu009

    Article  ADS  Google Scholar 

  • P.C. Argyres, E.J. Groth, P.J.E. Peebles, M.F. Struble, Detection of large-scale alignment of Lick counts around Abell clusters. Astron. J. 91, 471–477 (1986). doi:10.1086/114025

    Article  ADS  Google Scholar 

  • M. Azzaro, S.G. Patiri, F. Prada, A.R. Zentner, Angular distribution of satellite galaxies from the Sloan Digital Sky Survey Data Release 4. Mon. Not. R. Astron. Soc. 376, 43–47 (2007). doi:10.1111/j.1745-3933.2007.00282.x

    Article  ADS  Google Scholar 

  • D.J. Bacon, A.R. Refregier, R.S. Ellis, Detection of weak gravitational lensing by large-scale structure. Mon. Not. R. Astron. Soc. 318, 625–640 (2000). doi:10.1046/j.1365-8711.2000.03851.x

    Article  ADS  Google Scholar 

  • J. Bailin, M. Steinmetz, Internal and external alignment of the shapes and angular momenta of \(\varLambda\)CDM halos. Astrophys. J. 627, 647–665 (2005). doi:10.1086/430397

    Article  ADS  Google Scholar 

  • J. Bailin, D. Kawata, B.K. Gibson, M. Steinmetz, J.F. Navarro, C.B. Brook, S.P.D. Gill, R.A. Ibata, A. Knebe, G.F. Lewis, T. Okamoto, Internal alignment of the halos of disk galaxies in cosmological hydrodynamic simulations. Astrophys. J. Lett. 627, 17–20 (2005). doi:10.1086/432157

    Article  ADS  Google Scholar 

  • J. Bailin, C. Power, P. Norberg, D. Zaritsky, B.K. Gibson, The anisotropic distribution of satellite galaxies. Mon. Not. R. Astron. Soc. 390, 1133–1156 (2008). doi:10.1111/j.1365-2966.2008.13828.x

    Article  ADS  Google Scholar 

  • J.M. Bardeen, J.R. Bond, N. Kaiser, A.S. Szalay, The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15–61 (1986). doi:10.1086/164143

    Article  ADS  Google Scholar 

  • J. Barnes, G. Efstathiou, Angular momentum from tidal torques. Astrophys. J. 319, 575–600 (1987). doi:10.1086/165480

    Article  ADS  Google Scholar 

  • M. Bartelmann, Topical review gravitational lensing. Class. Quantum Gravity 27(23), 233001 (2010). doi:10.1088/0264-9381/27/23/233001

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • M. Bartelmann, P. Schneider, Weak gravitational lensing. Phys. Rep. 340, 291–472 (2001). doi:10.1016/S0370-1573(00)00082-X

    ADS  MATH  Google Scholar 

  • C.M. Baugh, A primer on hierarchical galaxy formation: the semi-analytical approach. Rep. Prog. Phys. 69, 3101–3156 (2006). doi:10.1088/0034-4885/69/12/R02

    Article  ADS  Google Scholar 

  • L.P. Bautz, W.W. Morgan, On the classification of the forms of clusters of galaxies. Astrophys. J. Lett. 162, 149 (1970). doi:10.1086/180643

    Article  ADS  Google Scholar 

  • A.J. Benson, Galaxy formation theory. Phys. Rep. 495, 33–86 (2010). doi:10.1016/j.physrep.2010.06.001

    MathSciNet  ADS  Google Scholar 

  • G.M. Bernstein, Comprehensive two-point analyses of weak gravitational lensing surveys. Astrophys. J. 695, 652–665 (2009). doi:10.1088/0004-637X/695/1/652

    Article  ADS  Google Scholar 

  • P. Bett, V. Eke, C.S. Frenk, A. Jenkins, J. Helly, J. Navarro, The spin and shape of dark matter haloes in the Millennium simulation of a \(\varLambda\) cold dark matter universe. Mon. Not. R. Astron. Soc. 376, 215–232 (2007). doi:10.1111/j.1365-2966.2007.11432.x

    Article  ADS  Google Scholar 

  • P. Bett, V. Eke, C.S. Frenk, A. Jenkins, T. Okamoto, The angular momentum of cold dark matter haloes with and without baryons. Mon. Not. R. Astron. Soc. 404, 1137–1156 (2010). doi:10.1111/j.1365-2966.2010.16368.x

    ADS  Google Scholar 

  • B. Binggeli, The shape and orientation of clusters of galaxies. Astron. Astrophys. 107, 338–349 (1982)

    ADS  Google Scholar 

  • J. Blazek, M. McQuinn, U. Seljak, Testing the tidal alignment model of galaxy intrinsic alignment. J. Cosmol. Astropart. Phys. 5, 10 (2011). doi:10.1088/1475-7516/2011/05/010

    Article  ADS  Google Scholar 

  • J. Blazek, R. Mandelbaum, U. Seljak, R. Nakajima, Separating intrinsic alignment and galaxy-galaxy lensing. J. Cosmol. Astropart. Phys. 5, 41 (2012). doi:10.1088/1475-7516/2012/05/041

    Article  ADS  Google Scholar 

  • J. Blazek, Z. Vlah, U. Seljak, Tidal alignment of galaxies. ArXiv e-prints (2015)

  • J.R. Bond, S. Cole, G. Efstathiou, N. Kaiser, Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J. 379, 440–460 (1991). doi:10.1086/170520

    Article  ADS  Google Scholar 

  • J.R. Bond, L. Kofman, D. Pogosyan, How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996). doi:10.1038/380603a0

    Article  ADS  Google Scholar 

  • T.G. Brainerd, Anisotropic distribution of SDSS satellite galaxies: planar (not polar) alignment. Astrophys. J. Lett. 628, 101–104 (2005). doi:10.1086/432713

    Article  ADS  Google Scholar 

  • T.G. Brainerd, R.D. Blandford, I. Smail, Weak gravitational lensing by galaxies. Astrophys. J. 466, 623 (1996). doi:10.1086/177537

    Article  ADS  Google Scholar 

  • S. Bridle, L. King, Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements. New J. Phys. 9, 444 (2007). doi:10.1088/1367-2630/9/12/444

    Article  ADS  Google Scholar 

  • S. Bridle, S.T. Balan, M. Bethge, M. Gentile, S. Harmeling, C. Heymans, M. Hirsch, R. Hosseini, M. Jarvis, D. Kirk, T. Kitching, K. Kuijken, A. Lewis, S. Paulin-Henriksson, B. Schölkopf, M. Velander, L. Voigt, D. Witherick, A. Amara, G. Bernstein, F. Courbin, M. Gill, A. Heavens, R. Mandelbaum, R. Massey, B. Moghaddam, A. Rassat, A. Réfrégier, J. Rhodes, T. Schrabback, J. Shawe-Taylor, M. Shmakova, L. van Waerbeke, D. Wittman, Results of the GREAT08 Challenge: an image analysis competition for cosmological lensing. Mon. Not. R. Astron. Soc. 405, 2044–2061 (2010). doi:10.1111/j.1365-2966.2010.16598.x

    ADS  MATH  Google Scholar 

  • F.G. Brown, The inclinations of the spiral nebulæ to the line of sight. Mon. Not. R. Astron. Soc. 99, 14 (1938a)

    Article  ADS  Google Scholar 

  • F.G. Brown, The inclinations to the line of sight of the non-galactic nebulae. Mon. Not. R. Astron. Soc. 98, 218 (1938b)

    Article  ADS  Google Scholar 

  • F.G. Brown, The distribution of the position-angles of the extra-galactic nebulæ in Horologium. Mon. Not. R. Astron. Soc. 99, 534 (1939)

    Article  ADS  Google Scholar 

  • F.G. Brown, Classified forms and position angles of 4891 galaxies in a continuous field of 3071 square degrees centred in the Constellation Pisces. Mon. Not. R. Astron. Soc. 127, 517 (1964)

    Article  ADS  Google Scholar 

  • F.G. Brown, The forms and position angles of 4287 galaxies in Hydra, Ursa Major, Virgo and Eridanus. Mon. Not. R. Astron. Soc. 138, 527 (1968)

    Article  ADS  Google Scholar 

  • M.L. Brown, A.N. Taylor, N.C. Hambly, S. Dye, Measurement of intrinsic alignments in galaxy ellipticities. Mon. Not. R. Astron. Soc. 333, 501–509 (2002). doi:10.1046/j.1365-8711.2002.05354.x

    Article  ADS  Google Scholar 

  • M.L. Brown, A.N. Taylor, D.J. Bacon, M.E. Gray, S. Dye, K. Meisenheimer, C. Wolf, The shear power spectrum from the COMBO-17 survey. Mon. Not. R. Astron. Soc. 341, 100–118 (2003). doi:10.1046/j.1365-8711.2003.06237.x

    Article  ADS  Google Scholar 

  • R. Brunino, I. Trujillo, F.R. Pearce, P.A. Thomas, The orientation of galaxy dark matter haloes around cosmic voids. Mon. Not. R. Astron. Soc. 375, 184–190 (2007). doi:10.1111/j.1365-2966.2006.11282.x

    Article  ADS  Google Scholar 

  • D. Burstein, M.P. Haynes, M. Faber, Dependence of galaxy properties on viewing angle. Nature 353, 515–521 (1991). doi:10.1038/353515a0

    Article  ADS  Google Scholar 

  • G. Camelio, M. Lombardi, On the origin of intrinsic alignment in cosmic shear measurements: an analytic argument. ArXiv e-prints (2015)

  • D. Carter, N. Metcalfe, The morphology of clusters of galaxies. Mon. Not. R. Astron. Soc. 191, 325–337 (1980)

    Article  ADS  Google Scholar 

  • P. Catelan, T. Theuns, Evolution of the angular momentum of protogalaxies from tidal torques: Zel’dovich approximation. Mon. Not. R. Astron. Soc. 282, 436–454 (1996)

    Article  ADS  Google Scholar 

  • P. Catelan, M. Kamionkowski, R.D. Blandford, Intrinsic and extrinsic galaxy alignment. Mon. Not. R. Astron. Soc. 320, 7–13 (2001). doi:10.1046/j.1365-8711.2001.04105.x

    Article  ADS  Google Scholar 

  • S.W. Chambers, A.L. Melott, C.J. Miller, Einstein cluster alignments revisited. Astrophys. J. 544, 104–108 (2000). doi:10.1086/317216

    Article  ADS  Google Scholar 

  • S.W. Chambers, A.L. Melott, C.J. Miller, The nearest neighbor alignment of cluster X-ray isophotes. Astrophys. J. 565, 849–853 (2002). doi:10.1086/324278

    Article  ADS  Google Scholar 

  • N.E. Chisari, C. Dvorkin, Cosmological information in the intrinsic alignments of luminous red galaxies. J. Cosmol. Astropart. Phys. 12, 29 (2013). doi:10.1088/1475-7516/2013/12/029

    Article  ADS  Google Scholar 

  • N.E. Chisari, R. Mandelbaum, M.A. Strauss, E.M. Huff, N.A. Bahcall, Intrinsic alignments of group and cluster galaxies in photometric surveys. Mon. Not. R. Astron. Soc. 445, 726–748 (2014). doi:10.1093/mnras/stu1786

    Article  ADS  Google Scholar 

  • S. Codis, C. Pichon, J. Devriendt, A. Slyz, D. Pogosyan, Y. Dubois, T. Sousbie, Connecting the cosmic web to the spin of dark haloes: implications for galaxy formation. Mon. Not. R. Astron. Soc. 427, 3320–3336 (2012). doi:10.1111/j.1365-2966.2012.21636.x

    Article  ADS  Google Scholar 

  • S. Codis, R. Gavazzi, Y. Dubois, C. Pichon, K. Benabed, V. Desjacques, D. Pogosyan, J. Devriendt, A. Slyz, Intrinsic alignment of simulated galaxies in the cosmic web: implications for weak lensing surveys. ArXiv e-prints (2014)

  • S. Codis, C. Pichon, D. Pogosyan, Spin alignments within the cosmic web: a theory of constrained tidal torques near filaments. ArXiv e-prints (2015)

  • A.R. Conn, G.F. Lewis, R.A. Ibata, Q.A. Parker, D.B. Zucker, A.W. McConnachie, N.F. Martin, D. Valls-Gabaud, N. Tanvir, M.J. Irwin, A.M.N. Ferguson, S.C. Chapman, The three-dimensional structure of the M31 satellite system; strong evidence for an inhomogeneous distribution of satellites. Astrophys. J. 766, 120 (2013). doi:10.1088/0004-637X/766/2/120

    Article  ADS  Google Scholar 

  • R.A. Crain, J. Schaye, R.G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C.S. Frenk, I.G. McCarthy, J.C. Helly, A. Jenkins, Y.M. Rosas-Guevara, S.D.M. White, J.W. Trayford, The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. ArXiv e-prints (2015)

  • R.G. Crittenden, P. Natarajan, U.-L. Pen, T. Theuns, Spin-induced galaxy alignments and their implications for weak-lensing measurements. Astrophys. J. 559, 552–571 (2001). doi:10.1086/322370

    Article  ADS  Google Scholar 

  • R.G. Crittenden, P. Natarajan, U.-L. Pen, T. Theuns, Discriminating weak lensing from intrinsic spin correlations using the curl-gradient decomposition. Astrophys. J. 568, 20–27 (2002). doi:10.1086/338838

    Article  ADS  Google Scholar 

  • R.A.C. Croft, C.A. Metzler, Weak-lensing surveys and the intrinsic correlation of galaxy ellipticities. Astrophys. J. 545, 561–571 (2000). doi:10.1086/317856

    Article  ADS  Google Scholar 

  • A.J. Cuesta, J.E. Betancort-Rijo, S. Gottlöber, S.G. Patiri, G. Yepes, F. Prada, Spin alignment of dark matter haloes in the shells of the largest voids. Mon. Not. R. Astron. Soc. 385, 867–874 (2008). doi:10.1111/j.1365-2966.2008.12879.x

    Article  ADS  Google Scholar 

  • M. Danovich, A. Dekel, O. Hahn, R. Teyssier, Coplanar streams, pancakes and angular-momentum exchange in high-z disc galaxies. Mon. Not. R. Astron. Soc. 422, 1732–1749 (2012). doi:10.1111/j.1365-2966.2012.20751.x

    Article  ADS  Google Scholar 

  • M. Danovich, A. Dekel, O. Hahn, D. Ceverino, J. Primack, Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge. ArXiv e-prints (2014)

  • A.J. Deason, I.G. McCarthy, A.S. Font, N.W. Evans, C.S. Frenk, V. Belokurov, N.I. Libeskind, R.A. Crain, T. Theuns, Mismatch and misalignment: dark haloes and satellites of disc galaxies. Mon. Not. R. Astron. Soc. 415, 2607–2625 (2011). doi:10.1111/j.1365-2966.2011.18884.x

    Article  ADS  Google Scholar 

  • V.P. Debattista, F.C. van den Bosch, R. Roskar, T. Quinn, B. Moore, D.R. Cole, Internal alignments of red versus blue discs in dark matter halos. ArXiv e-prints (2015)

  • A. Dekel, M.J. West, S.J. Aarseth, Alignments of clusters of galaxies as a probe for superclusters. Astrophys. J. 279, 1–12 (1984). doi:10.1086/161860

    Article  ADS  Google Scholar 

  • A. Dekel, Y. Birnboim, G. Engel, J. Freundlich, T. Goerdt, M. Mumcuoglu, E. Neistein, C. Pichon, R. Teyssier, E. Zinger, Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009). doi:10.1038/nature07648

    Article  ADS  Google Scholar 

  • S. Djorgovski, Alignment of galaxies in the Coma Cluster. Astrophys. J. Lett. 274, 7–11 (1983). doi:10.1086/184140

    Article  ADS  Google Scholar 

  • S. Dodelson, Modern Cosmology, 2003

    Google Scholar 

  • A.G. Doroshkevich, The space structure of perturbations and the origin of rotation of galaxies in the theory of fluctuation. Astrofizika 6, 581–600 (1970)

    MathSciNet  ADS  Google Scholar 

  • A. Dressler, A comprehensive study of 12 very rich clusters of galaxies. II—dynamics. Astrophys. J. 226, 55–69 (1978). doi:10.1086/156584

    Article  ADS  Google Scholar 

  • M.J. Drinkwater, R.J. Jurek, C. Blake, D. Woods, K.A. Pimbblet, K. Glazebrook, R. Sharp, M.B. Pracy, S. Brough, M. Colless, W.J. Couch, S.M. Croom, T.M. Davis, et al., The WiggleZ Dark Energy Survey: survey design and first data release. Mon. Not. R. Astron. Soc. 401, 1429–1452 (2010). doi:10.1111/j.1365-2966.2009.15754.x

    Article  ADS  Google Scholar 

  • J. Dubinski, Cosmological tidal shear. Astrophys. J. 401, 441–454 (1992). doi:10.1086/172076

    Article  ADS  Google Scholar 

  • Y. Dubois, C. Pichon, C. Welker, D. Le Borgne, J. Devriendt, C. Laigle, S. Codis, D. Pogosyan, S. Arnouts, K. Benabed, E. Bertin, J. Blaizot, F. Bouchet, J.-F. Cardoso, S. Colombi, V. de Lapparent, V. Desjacques, R. Gavazzi, S. Kassin, T. Kimm, H. McCracken, B. Milliard, S. Peirani, S. Prunet, S. Rouberol, J. Silk, A. Slyz, T. Sousbie, R. Teyssier, L. Tresse, M. Treyer, D. Vibert, M. Volonteri, Dancing in the dark: galactic properties trace spin swings along the cosmic web. Mon. Not. R. Astron. Soc. 444, 1453–1468 (2014). doi:10.1093/mnras/stu1227

    Article  ADS  Google Scholar 

  • F.W. Dyson, A.S. Eddington, C. Davidson, A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 220, 291–333 (1920). doi:10.1098/rsta.1920.0009

    Article  ADS  Google Scholar 

  • G. Efstathiou, A model of supernova feedback in galaxy formation. Mon. Not. R. Astron. Soc. 317, 697–719 (2000). doi:10.1046/j.1365-8711.2000.03665.x

    Article  ADS  Google Scholar 

  • G. Efstathiou, Fred Hoyle: contributions to the theory of galaxy formation. ArXiv Astrophysics e-prints (2003)

  • G. Efstathiou, J. Silk, The formation of galaxies. Fundam. Cosm. Phys. 9, 1–138 (1983)

    ADS  Google Scholar 

  • G. Efstathiou, M. Davis, S.D.M. White, C.S. Frenk, Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 57, 241–260 (1985). doi:10.1086/191003

    Article  ADS  Google Scholar 

  • A.K.D. Evans, S. Bridle, A detection of dark matter halo ellipticity using galaxy cluster lensing in the SDSS. Astrophys. J. 695, 1446–1456 (2009). doi:10.1088/0004-637X/695/2/1446

    Article  ADS  Google Scholar 

  • A. Faltenbacher, C. Li, S. Mao, F.C. van den Bosch, X. Yang, Y.P. Jing, A. Pasquali, H.J. Mo, Three different types of galaxy alignment within dark matter halos. Astrophys. J. Lett. 662, 71–74 (2007). doi:10.1086/519683

    Article  ADS  Google Scholar 

  • A. Faltenbacher, Y.P. Jing, C. Li, S. Mao, H.J. Mo, A. Pasquali, F.C. van den Bosch, Spatial and kinematic alignments between central and satellite halos. Astrophys. J. 675, 146–155 (2008). doi:10.1086/525243

    Article  ADS  Google Scholar 

  • A. Faltenbacher, C. Li, S.D.M. White, Y.-P. Jing, S.-D.Mao, J. Wang, Alignment between galaxies and large-scale structure. Res. Astron. Astrophys. 9, 41–58 (2009). doi:10.1088/1674-4527/9/1/004

    Article  ADS  Google Scholar 

  • Z.-H. Fan, Intrinsic alignments of galaxies and their effects on weak-lensing detections of mass concentrations. Astrophys. J. 669, 10–20 (2007). doi:10.1086/521182

    Article  ADS  Google Scholar 

  • E.A. Fath, A study of nebulae. Astron. J. 28, 75–86 (1914). doi:10.1086/104033

    Article  ADS  Google Scholar 

  • H.C. Ferguson, M. Dickinson, R. Williams, The Hubble deep fields. Annu. Rev. Astron. Astrophys. 38, 667–715 (2000). doi:10.1146/annurev.astro.38.1.667

    Article  ADS  Google Scholar 

  • J. Ford, H. Hildebrandt, L. Van Waerbeke, T. Erben, C. Laigle, M. Milkeraitis, C.B. Morrison, Cluster magnification and the mass-richness relation in CFHTLenS. Mon. Not. R. Astron. Soc. 439, 3755–3764 (2014). doi:10.1093/mnras/stu225

    Article  ADS  Google Scholar 

  • J.E. Forero-Romero, S. Contreras, N. Padilla, Cosmic web alignments with the shape, angular momentum and peculiar velocities of dark matter haloes. Mon. Not. R. Astron. Soc. 443, 1090–1102 (2014). doi:10.1093/mnras/stu1150

    Article  ADS  Google Scholar 

  • P. Fouque, G. Paturel, Standard photometric diameters of galaxies. II—reduction of the ESO, UGC, MCG catalogues. Astron. Astrophys. 150, 192–204 (1985)

    ADS  Google Scholar 

  • T.M. Fuller, M.J. West, T.J. Bridges, Alignments of the dominant galaxies in poor clusters. Astrophys. J. 519, 22–26 (1999). doi:10.1086/307343

    Article  ADS  Google Scholar 

  • G. Gamow, The role of turbulence in the evolution of the Universe. Phys. Rev. 86, 251 (1952). doi:10.1103/PhysRev.86.251

    Article  ADS  Google Scholar 

  • L. Gao, J.F. Navarro, S. Cole, C.S. Frenk, S.D.M. White, V. Springel, A. Jenkins, A.F. Neto, The redshift dependence of the structure of massive \(\varLambda\) cold dark matter haloes. Mon. Not. R. Astron. Soc. 387, 536–544 (2008). doi:10.1111/j.1365-2966.2008.13277.x

    Article  ADS  Google Scholar 

  • A. Giahi-Saravani, B.M. Schäfer, Weak gravitational lensing of intrinsically aligned galaxies. Mon. Not. R. Astron. Soc. 437, 1847–1857 (2014). doi:10.1093/mnras/stt2016

    Article  ADS  Google Scholar 

  • O. Hahn, C. Porciani, C.M. Carollo, A. Dekel, Properties of dark matter haloes in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 375, 489–499 (2007a). doi:10.1111/j.1365-2966.2006.11318.x

    Article  ADS  Google Scholar 

  • O. Hahn, C.M. Carollo, C. Porciani, A. Dekel, The evolution of dark matter halo properties in clusters, filaments, sheets and voids. Mon. Not. R. Astron. Soc. 381, 41–51 (2007b). doi:10.1111/j.1365-2966.2007.12249.x

    Article  ADS  Google Scholar 

  • A. Hall, A. Taylor, Intrinsic alignments in the cross-correlation of cosmic shear and cosmic microwave background weak lensing. Mon. Not. R. Astron. Soc. 443, 119–123 (2014). doi:10.1093/mnrasl/slu094

    Article  ADS  Google Scholar 

  • N.C. Hambly, H.T. MacGillivray, M.A. Read, S.B. Tritton, E.B. Thomson, B.D. Kelly, D.H. Morgan, R.E. Smith, S.P. Driver, J. Williamson, Q.A. Parker, M.R.S. Hawkins, P.M. Williams, A. Lawrence, The SuperCOSMOS Sky Survey—I. Introduction and description. Mon. Not. R. Astron. Soc. 326, 1279–1294 (2001). doi:10.1111/j.1365-8711.2001.04660.x

    Article  ADS  Google Scholar 

  • J. Hao, J.M. Kubo, R. Feldmann, J. Annis, D.E. Johnston, H. Lin, T.A. McKay, Intrinsic alignment of cluster galaxies: the redshift evolution. Astrophys. J. 740, 39 (2011). doi:10.1088/0004-637X/740/1/39

    Article  ADS  Google Scholar 

  • D.L. Hawley, P.J.E. Peebles, Distribution of observed orientations of galaxies. Astron. J. 80, 477–491 (1975). doi:10.1086/111768

    Article  ADS  Google Scholar 

  • A. Heavens, J. Peacock, Tidal torques and local density maxima. Mon. Not. R. Astron. Soc. 232, 339–360 (1988)

    Article  ADS  Google Scholar 

  • A. Heavens, A. Refregier, C. Heymans, Intrinsic correlation of galaxy shapes: implications for weak lensing measurements. Mon. Not. R. Astron. Soc. 319, 649–656 (2000). doi:10.1046/j.1365-8711.2000.03907.x

    Article  ADS  Google Scholar 

  • G. Helou, Spin statistics in binary galaxies—implications for formation and evolution. Astrophys. J. 284, 471–478 (1984). doi:10.1086/162429

    Article  ADS  Google Scholar 

  • C. Heymans, A. Heavens, Weak gravitational lensing: reducing the contamination by intrinsic alignments. Mon. Not. R. Astron. Soc. 339, 711–720 (2003). doi:10.1046/j.1365-8711.2003.06213.x

    Article  ADS  Google Scholar 

  • C. Heymans, M. Brown, A. Heavens, K. Meisenheimer, A. Taylor, C. Wolf, Weak lensing with COMBO-17: estimation and removal of intrinsic alignments. Mon. Not. R. Astron. Soc. 347, 895–908 (2004). doi:10.1111/j.1365-2966.2004.07264.x

    Article  ADS  Google Scholar 

  • C. Heymans, M. White, A. Heavens, C. Vale, L. van Waerbeke, Potential sources of contamination to weak lensing measurements: constraints from N-body simulations. Mon. Not. R. Astron. Soc. 371, 750–760 (2006a). doi:10.1111/j.1365-2966.2006.10705.x

    Article  ADS  Google Scholar 

  • C. Heymans, L. Van Waerbeke, D. Bacon, J. Berge, G. Bernstein, E. Bertin, S. Bridle, M.L. Brown, D. Clowe, H. Dahle, T. Erben, M. Gray, M. Hetterscheidt, H. Hoekstra, P. Hudelot, M. Jarvis, K. Kuijken, V. Margoniner, R. Massey, Y. Mellier, R. Nakajima, A. Refregier, J. Rhodes, T. Schrabback, D. Wittman, The Shear Testing Programme—I. Weak lensing analysis of simulated ground-based observations. Mon. Not. R. Astron. Soc. 368, 1323–1339 (2006b). doi:10.1111/j.1365-2966.2006.10198.x

    Article  ADS  Google Scholar 

  • C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger, T.D. Kitching, F. Simpson, J. Benjamin, T. Erben, H. Hildebrandt, H. Hoekstra, Y. Mellier, L. Miller, L. Van Waerbeke, M.L. Brown, et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. Mon. Not. R. Astron. Soc. 432, 2433–2453 (2013). doi:10.1093/mnras/stt601

    Article  ADS  Google Scholar 

  • S. Hilbert, J. Hartlap, S.D.M. White, P. Schneider, Ray-tracing through the Millennium Simulation: born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing. Astron. Astrophys. 499, 31–43 (2009). doi:10.1051/0004-6361/200811054

    Article  ADS  Google Scholar 

  • H. Hildebrandt, S. Arnouts, P. Capak, L.A. Moustakas, C. Wolf, F.B. Abdalla, R.J. Assef, M. Banerji, N. Benítez, G.B. Brammer, T. Budavári, S. Carliles, D. Coe, T. Dahlen, R. Feldmann, D. Gerdes, B. Gillis, O. Ilbert, R. Kotulla, O. Lahav, I.H. Li, J.-M. Miralles, N. Purger, S. Schmidt, J. Singal, PHAT: PHoto-z accuracy testing. Astron. Astrophys. 523, 31 (2010). doi:10.1051/0004-6361/201014885

    Article  ADS  Google Scholar 

  • C.M. Hirata, U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear. Phys. Rev. D 70(6), 063526 (2004). doi:10.1103/PhysRevD.70.063526

    ADS  Google Scholar 

  • C.M. Hirata, R. Mandelbaum, M. Ishak, U. Seljak, R. Nichol, K.A. Pimbblet, N.P. Ross, D. Wake, Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys. Mon. Not. R. Astron. Soc. 381, 1197–1218 (2007). doi:10.1111/j.1365-2966.2007.12312.x

    Article  ADS  Google Scholar 

  • H. Hoekstra, B. Jain, Weak gravitational lensing and its cosmological applications. Annu. Rev. Nucl. Part. Sci. 58, 99–123 (2008). doi:10.1146/annurev.nucl.58.110707.171151

    Article  ADS  Google Scholar 

  • H. Hoekstra, H.K.C. Yee, M.D. Gladders, Properties of galaxy dark matter halos from weak lensing. Astrophys. J. 606, 67–77 (2004). doi:10.1086/382726

    Article  ADS  Google Scholar 

  • E. Holmberg, A study of physical groups of galaxies. Ark. Astron. 5, 305–343 (1969)

    ADS  Google Scholar 

  • P.F. Hopkins, N.A. Bahcall, P. Bode, Cluster alignments and ellipticities in \(\varLambda\)CDM cosmology. Astrophys. J. 618, 1–15 (2005). doi:10.1086/425993

    Article  ADS  Google Scholar 

  • F. Hoyle, The origin of the rotations of the galaxies, in Problems of Cosmical Aerodynamics, 1951, p. 195

    Google Scholar 

  • F. Hoyle, Galaxies, nuclei and quasars. Am. J. Phys. 34, 710 (1966). doi:10.1119/1.1973419

    Article  ADS  Google Scholar 

  • W. Hu, Power spectrum tomography with weak lensing. Astrophys. J. Lett. 522, 21–24 (1999). doi:10.1086/312210

    Article  ADS  Google Scholar 

  • F.X. Hu, G.X. Wu, G.X. Song, Q.R. Yuan, S. Okamura, Orientation of galaxies in the local supercluster: a review. Astrophys. Space Sci. 302, 43–59 (2006). doi:10.1007/s10509-005-9006-7

    Article  ADS  Google Scholar 

  • E.P. Hubble, Extragalactic nebulae. Astrophys. J. 64, 321–369 (1926). doi:10.1086/143018

    Article  ADS  Google Scholar 

  • E.M. Huff, G.J. Graves, Magnificent magnification: exploiting the other half of the lensing signal. Astrophys. J. Lett. 780, 16 (2014). doi:10.1088/2041-8205/780/2/L16

    Article  ADS  Google Scholar 

  • L. Hui, J. Zhang, Intrinsic/extrinsic density-ellipticity correlations and galaxy-galaxy lensing. ArXiv Astrophysics e-prints (2002)

  • C.-L. Hung, H. Ebeling, Galaxy alignments in very X-ray luminous clusters at \(z > 0.5\). Mon. Not. R. Astron. Soc. 421, 3229–3237 (2012). doi:10.1111/j.1365-2966.2012.20546.x

    Article  ADS  Google Scholar 

  • D. Huterer, M. Takada, Calibrating the nonlinear matter power spectrum: requirements for future weak lensing surveys. Astropart. Phys. 23, 369–376 (2005). doi:10.1016/j.astropartphys.2005.02.006

    Article  ADS  Google Scholar 

  • D. Huterer, M. White, Nulling tomography with weak gravitational lensing. Phys. Rev. D 72(4), 043002 (2005). doi:10.1103/PhysRevD.72.043002

    ADS  Google Scholar 

  • D. Huterer, M. Takada, G. Bernstein, B. Jain, Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration. Mon. Not. R. Astron. Soc. 366, 101–114 (2006). doi:10.1111/j.1365-2966.2005.09782.x

    Article  ADS  Google Scholar 

  • B. Joachimi, S.L. Bridle, Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations. Astron. Astrophys. 523, 1 (2010). doi:10.1051/0004-6361/200913657

    Article  ADS  Google Scholar 

  • B. Joachimi, P. Schneider, The removal of shear-ellipticity correlations from the cosmic shear signal via nulling techniques. Astron. Astrophys. 488, 829–843 (2008). doi:10.1051/0004-6361:200809971

    Article  ADS  MATH  Google Scholar 

  • B. Joachimi, P. Schneider, The removal of shear-ellipticity correlations from the cosmic shear signal. Influence of photometric redshift errors on the nulling technique. Astron. Astrophys. 507, 105–129 (2009). doi:10.1051/0004-6361/200912420

    Article  ADS  MATH  Google Scholar 

  • B. Joachimi, R. Mandelbaum, F.B. Abdalla, S.L. Bridle, Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample. Astron. Astrophys. 527, 26 (2011). doi:10.1051/0004-6361/201015621

    Article  ADS  Google Scholar 

  • B. Joachimi, E. Semboloni, P.E. Bett, J. Hartlap, S. Hilbert, H. Hoekstra, P. Schneider, T. Schrabback, Intrinsic galaxy shapes and alignments—I. Measuring and modelling COSMOS intrinsic galaxy ellipticities. Mon. Not. R. Astron. Soc. 431, 477–492 (2013a). doi:10.1093/mnras/stt172

    Article  ADS  Google Scholar 

  • B. Joachimi, E. Semboloni, S. Hilbert, P.E. Bett, J. Hartlap, H. Hoekstra, P. Schneider, Intrinsic galaxy shapes and alignments—II. Modelling the intrinsic alignment contamination of weak lensing surveys. Mon. Not. R. Astron. Soc. 436, 819–838 (2013b). doi:10.1093/mnras/stt1618

    Article  ADS  Google Scholar 

  • B.J.T. Jones, The origin of galaxies: a review of recent theoretical developments and their confrontation with observation. Rev. Mod. Phys. 48, 107–145 (1976). doi:10.1103/RevModPhys.48.107

    Article  ADS  MathSciNet  Google Scholar 

  • N. Kaiser, Weak gravitational lensing of distant galaxies. Astrophys. J. 388, 272–286 (1992). doi:10.1086/171151

    Article  ADS  Google Scholar 

  • N. Kaiser, G. Wilson, G.A. Luppino, Large-scale cosmic shear measurements. ArXiv Astrophysics e-prints (2000)

  • X. Kang, F.C. van den Bosch, X. Yang, S. Mao, H.J. Mo, C. Li, Y.P. Jing, The alignment between satellites and central galaxies: theory versus observations. Mon. Not. R. Astron. Soc. 378, 1531–1542 (2007). doi:10.1111/j.1365-2966.2007.11902.x

    Article  ADS  Google Scholar 

  • S.F. Kasun, A.E. Evrard, Shapes and alignments of galaxy cluster halos. Astrophys. J. 629, 781–790 (2005). doi:10.1086/430811

    Article  ADS  Google Scholar 

  • D. Kereš, N. Katz, M. Fardal, R. Davé, D.H. Weinberg, Galaxies in a simulated \(\varLambda\)CDM Universe—I. Cold mode and hot cores. Mon. Not. R. Astron. Soc. 395, 160–179 (2009). doi:10.1111/j.1365-2966.2009.14541.x

    Article  ADS  Google Scholar 

  • A. Kiessling, M. Cacciato, B. Joachimi, D. Kirk, T.D. Kitching, A. Leonard, R. Mandelbaum, B.M. Schäfer, C. Sifón, M.L. Brown, A. Rassat, Galaxy alignments: theory, modelling and simulations. ArXiv e-prints (2015)

  • M. Kilbinger, Review article: cosmology with cosmic shear observations. ArXiv e-prints (2014)

  • A.G. Kim, E.V. Linder, R. Miquel, N. Mostek, Effects of systematic uncertainties on the supernova determination of cosmological parameters. Mon. Not. R. Astron. Soc. 347, 909–920 (2004). doi:10.1111/j.1365-2966.2004.07260.x

    Article  ADS  Google Scholar 

  • T. Kimm, J. Devriendt, A. Slyz, C. Pichon, S.A. Kassin, Y. Dubois, The angular momentum of baryons and dark matter halos revisited. ArXiv e-prints (2011)

  • L.J. King, P. Schneider, Separating cosmic shear from intrinsic galaxy alignments: correlation function tomography. Astron. Astrophys. 398, 23–30 (2003). doi:10.1051/0004-6361:20021614

    Article  ADS  Google Scholar 

  • D. Kirk, S. Bridle, M. Schneider, The impact of intrinsic alignments: cosmological constraints from a joint analysis of cosmic shear and galaxy survey data. Mon. Not. R. Astron. Soc. 408, 1502–1515 (2010). doi:10.1111/j.1365-2966.2010.17213.x

    Article  ADS  Google Scholar 

  • D. Kirk, A. Rassat, O. Host, S. Bridle, The cosmological impact of intrinsic alignment model choice for cosmic shear. Mon. Not. R. Astron. Soc. 424, 1647–1657 (2012). doi:10.1111/j.1365-2966.2012.21099.x

    Article  ADS  Google Scholar 

  • D. Kirk, M.L. Brown, H. Hoekstra, B. Joachimi, T.D. Kitching, R. Mandelbaum, C. Sifón, M. Cacciato, A. Choi, A. Kiessling, A. Leonard, A. Rassat, B.M. Schäfer, Galaxy alignments: observations and impact on cosmology. ArXiv e-prints (2015)

  • T.D. Kitching, A.N. Taylor, Path integral marginalization for cosmology: scale-dependent galaxy bias and intrinsic alignments. Mon. Not. R. Astron. Soc. 410, 1677–1686 (2011). doi:10.1111/j.1365-2966.2010.17548.x

    ADS  Google Scholar 

  • T.D. Kitching, A.N. Taylor, A.F. Heavens, Systematic effects on dark energy from 3D weak shear. Mon. Not. R. Astron. Soc. 389, 173–190 (2008). doi:10.1111/j.1365-2966.2008.13419.x

    Article  ADS  Google Scholar 

  • T.D. Kitching, A. Amara, F.B. Abdalla, B. Joachimi, A. Refregier, Cosmological systematics beyond nuisance parameters: form-filling functions. Mon. Not. R. Astron. Soc. 399, 2107–2128 (2009). doi:10.1111/j.1365-2966.2009.15408.x

    Article  ADS  Google Scholar 

  • T.D. Kitching, S.T. Balan, S. Bridle, N. Cantale, F. Courbin, T. Eifler, M. Gentile, M.S.S. Gill, S. Harmeling, C. Heymans, M. Hirsch, K. Honscheid, T. Kacprzak, D. Kirkby, D. Margala, R.J. Massey, P. Melchior, G. Nurbaeva, K. Patton, J. Rhodes, B.T.P. Rowe, A.N. Taylor, M. Tewes, M. Viola, D. Witherick, L. Voigt, J. Young, J. Zuntz, Image analysis for cosmology: results from the GREAT10 Galaxy Challenge. Mon. Not. R. Astron. Soc. 423, 3163–3208 (2012). doi:10.1111/j.1365-2966.2012.21095.x

    Article  ADS  Google Scholar 

  • T.D. Kitching, A.F. Heavens, J. Alsing, T. Erben, C. Heymans, H. Hildebrandt, H. Hoekstra, A. Jaffe, A. Kiessling, Y. Mellier, L. Miller, L. van Waerbeke, J. Benjamin, J. Coupon, L. Fu, M.J. Hudson, M. Kilbinger, K. Kuijken, B.T.P. Rowe, T. Schrabback, E. Semboloni, M. Velander, 3D cosmic shear: cosmology from CFHTLenS. Mon. Not. R. Astron. Soc. 442, 1326–1349 (2014a). doi:10.1093/mnras/stu934

    Article  ADS  Google Scholar 

  • T.D. Kitching, A.F. Heavens, S. Das, 3D weak gravitational lensing of the CMB and galaxies. ArXiv e-prints (2014b)

  • A. Knebe, N. Draganova, C. Power, G. Yepes, Y. Hoffman, S. Gottlöber, B.K. Gibson, On the relation between the radial alignment of dark matter subhaloes and host mass in cosmological simulations. Mon. Not. R. Astron. Soc. 386, 52–56 (2008a). doi:10.1111/j.1745-3933.2008.00459.x

    Article  ADS  Google Scholar 

  • A. Knebe, H. Yahagi, H. Kase, G. Lewis, B.K. Gibson, The radial alignment of dark matter subhaloes: from simulations to observations. Mon. Not. R. Astron. Soc. 388, 34–38 (2008b). doi:10.1111/j.1745-3933.2008.00495.x

    Article  ADS  Google Scholar 

  • A. Knebe, N.I. Libeskind, S.R. Knollmann, G. Yepes, S. Gottlöber, Y. Hoffman, The impact of baryonic physics on the shape and radial alignment of substructures in cosmological dark matter haloes. Mon. Not. R. Astron. Soc. 405, 1119–1128 (2010). doi:10.1111/j.1365-2966.2010.16514.x

    ADS  Google Scholar 

  • H. Knox-Shaw, The inclinations of spiral nebulæ to the line of sight. Mon. Not. R. Astron. Soc. 98, 587 (1938)

    Article  ADS  Google Scholar 

  • M. Kuhlen, J. Diemand, P. Madau, The shapes, orientation, and alignment of galactic dark matter subhalos. Astrophys. J. 671, 1135–1146 (2007). doi:10.1086/522878

    Article  ADS  Google Scholar 

  • D.G. Lambas, E.J. Groth, P.J.E. Peebles, Alignments of brightest cluster galaxies with large-scale structures. Astron. J. 95, 996–998 (1988a). doi:10.1086/114695

    Article  ADS  Google Scholar 

  • D.G. Lambas, E.J. Groth, P.J.E. Peebles, Statistics of galaxy orientations—morphology and large-scale structure. Astron. J. 95, 975–984 (1988b). doi:10.1086/114693

    Article  ADS  Google Scholar 

  • D.G. Lambas, M. Nicotra, H. Muriel, L. Ruiz, Alignment effects of clusters of galaxies. Astron. J. 100, 1006–1013 (1990). doi:10.1086/115574

    Article  ADS  Google Scholar 

  • R. Laureijs, J. Amiaux, S. Arduini, J.-L. Auguères, J. Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet, A. Ealet, et al., Euclid definition study report. ArXiv e-prints (2011)

  • J. Lee, On the intrinsic alignments of the late-type spiral galaxies from the Sloan Digital Sky Survey Data Release 7. Astrophys. J. 732, 99 (2011). doi:10.1088/0004-637X/732/2/99

    Article  ADS  Google Scholar 

  • J. Lee, P. Erdogdu, The alignments of the galaxy spins with the real-space tidal field reconstructed from the 2MASS redshift survey. Astrophys. J. 671, 1248–1255 (2007). doi:10.1086/523351

    Article  ADS  Google Scholar 

  • J. Lee, U.-L. Pen, Cosmic shear from galaxy spins. Astrophys. J. Lett. 532, 5–8 (2000). doi:10.1086/312556

    Article  ADS  Google Scholar 

  • J. Lee, U.-L. Pen, Galaxy spin statistics and spin-density correlation. Astrophys. J. 555, 106–124 (2001). doi:10.1086/321472

    Article  ADS  Google Scholar 

  • J. Lee, U.-L. Pen, Detection of galaxy spin alignments in the point source catalog redshift survey shear field. Astrophys. J. Lett. 567, 111–114 (2002). doi:10.1086/340000

    Article  ADS  Google Scholar 

  • J. Lee, V. Springel, U.-L. Pen, G. Lemson, Quantifying the cosmic web—I. The large-scale halo ellipticity-ellipticity and ellipticity-direction correlations. Mon. Not. R. Astron. Soc. 389, 1266–1274 (2008). doi:10.1111/j.1365-2966.2008.13624.x

    Article  ADS  Google Scholar 

  • C. Li, Y.P. Jing, A. Faltenbacher, J. Wang, The detection of the large-scale alignment of massive galaxies at \(z \sim0.6\). Astrophys. J. Lett. 770, 12 (2013). doi:10.1088/2041-8205/770/1/L12

    Article  ADS  Google Scholar 

  • N.I. Libeskind, Y. Hoffman, A. Knebe, M. Steinmetz, S. Gottlöber, O. Metuki, G. Yepes, The cosmic web and the orientation of angular momenta. Mon. Not. R. Astron. Soc. 421, 137–141 (2012). doi:10.1111/j.1745-3933.2012.01222.x

    Article  ADS  Google Scholar 

  • N.I. Libeskind, Y. Hoffman, J. Forero-Romero, S. Gottlöber, A. Knebe, M. Steinmetz, A. Klypin, The velocity shear tensor: tracer of halo alignment. Mon. Not. R. Astron. Soc. 428, 2489–2499 (2013). doi:10.1093/mnras/sts216

    Article  ADS  Google Scholar 

  • C.J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M.J. Raddick, R.C. Nichol, A. Szalay, D. Andreescu, P. Murray, J. Vandenberg, Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 389, 1179–1189 (2008). doi:10.1111/j.1365-2966.2008.13689.x

    Article  ADS  Google Scholar 

  • M.S. Longair, Galaxy Formation, 2008

    Google Scholar 

  • D. Lynden-Bell, Dwarf galaxies and globular clusters in high velocity hydrogen streams. Mon. Not. R. Astron. Soc. 174, 695–710 (1976)

    Article  ADS  Google Scholar 

  • A. Mana, T. Giannantonio, J. Weller, B. Hoyle, G. Hütsi, B. Sartoris, Combining clustering and abundances of galaxy clusters to test cosmology and primordial non-Gaussianity. Mon. Not. R. Astron. Soc. 434, 684–695 (2013). doi:10.1093/mnras/stt1062

    Article  ADS  Google Scholar 

  • R. Mandelbaum, C.M. Hirata, M. Ishak, U. Seljak, J. Brinkmann, Detection of large-scale intrinsic ellipticity-density correlation from the Sloan Digital Sky Survey and implications for weak lensing surveys. Mon. Not. R. Astron. Soc. 367, 611–626 (2006a). doi:10.1111/j.1365-2966.2005.09946.x

    Article  ADS  Google Scholar 

  • R. Mandelbaum, C.M. Hirata, T. Broderick, U. Seljak, J. Brinkmann, Ellipticity of dark matter haloes with galaxy-galaxy weak lensing. Mon. Not. R. Astron. Soc. 370, 1008–1024 (2006b). doi:10.1111/j.1365-2966.2006.10539.x

    Article  ADS  Google Scholar 

  • R. Mandelbaum, C. Blake, S. Bridle, F.B. Abdalla, S. Brough, M. Colless, W. Couch, S. Croom, T. Davis, M.J. Drinkwater, K. Forster, K. Glazebrook, et al., The WiggleZ Dark Energy Survey: direct constraints on blue galaxy intrinsic alignments at intermediate redshifts. Mon. Not. R. Astron. Soc. 410, 844–859 (2011). doi:10.1111/j.1365-2966.2010.17485.x

    Article  ADS  Google Scholar 

  • R. Mandelbaum, B. Rowe, R. Armstrong, D. Bard, E. Bertin, J. Bosch, D. Boutigny, F. Courbin, W.A. Dawson, A. Donnarumma, I. Fenech Conti, R. Gavazzi, M. Gentile, M. Gill, D.W. Hogg, E.M. Huff, M.J. Jee, T. Kacprzak, M. Kilbinger, T. Kuntzer, D. Lang, W. Luo, M.C. March, P.J. Marshall, J.E. Meyers, L. Miller, H. Miyatake, R. Nakajima, F.M. Ngole Mboula, G. Nurbaeva, Y. Okura, S. Paulin-Henriksson, J. Rhodes, M.D. Schneider, H. Shan, E.S. Sheldon, M. Simet, J.-L. Starck, F. Sureau, M. Tewes, K. Zarb Adami, J. Zhang, J. Zuntz, GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology. ArXiv e-prints (2014)

  • R. Massey, C. Heymans, J. Bergé, G. Bernstein, S. Bridle, D. Clowe, H. Dahle, R. Ellis, T. Erben, M. Hetterscheidt, F.W. High, C. Hirata, H. Hoekstra, P. Hudelot, M. Jarvis, D. Johnston, K. Kuijken, V. Margoniner, R. Mandelbaum, Y. Mellier, R. Nakajima, S. Paulin-Henriksson, M. Peeples, C. Roat, A. Refregier, J. Rhodes, T. Schrabback, M. Schirmer, U. Seljak, E. Semboloni, L. van Waerbeke, The Shear Testing Programme 2: factors affecting high-precision weak-lensing analyses. Mon. Not. R. Astron. Soc. 376, 13–38 (2007). doi:10.1111/j.1365-2966.2006.11315.x

    Article  ADS  Google Scholar 

  • R. Massey, T. Kitching, J. Richard, The dark matter of gravitational lensing. Rep. Prog. Phys. 73(8), 086901 (2010). doi:10.1088/0034-4885/73/8/086901

    Article  ADS  Google Scholar 

  • C.F. McKee, E.C. Ostriker, Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565–687 (2007). doi:10.1146/annurev.astro.45.051806.110602

    Article  ADS  Google Scholar 

  • H. Mo, F.C. van den Bosch, S. White, Galaxy Formation and Evolution, 2010

    Book  Google Scholar 

  • M. Mosleh, R.J. Williams, M. Franx, V. Gonzalez, R.J. Bouwens, P. Oesch, I. Labbe, G.D. Illingworth, M. Trenti, The evolution of mass-size relation for Lyman break galaxies from \(z = 1\) to \(z = 7\). Astrophys. J. Lett. 756, 12 (2012). doi:10.1088/2041-8205/756/1/L12

    Article  ADS  Google Scholar 

  • D. Munshi, P. Valageas, L. van Waerbeke, A. Heavens, Cosmology with weak lensing surveys. Phys. Rep. 462, 67–121 (2008). doi:10.1016/j.physrep.2008.02.003

    ADS  Google Scholar 

  • H. Muriel, D.G. Lambas, Alignments and filaments on large scales. Astron. J. 98, 1995–1998 (1989). doi:10.1086/115273

    Article  ADS  Google Scholar 

  • H. Muriel, D.G. Lambas, Systematics in the orientation of galaxies. Astron. J. 103, 393 (1992). doi:10.1086/116067

    Article  ADS  Google Scholar 

  • J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  • Y. Ocean Wang, W.P. Lin, X. Kang, A. Dutton, Y. Yu, A.V. Macciò, Satellite alignment. I. Distribution of substructures and their dependence on assembly history from N-body simulations. Astrophys. J. 786, 8 (2014). doi:10.1088/0004-637X/786/1/8

    Article  ADS  Google Scholar 

  • T. Okumura, Y.P. Jing, The gravitational shear-intrinsic ellipticity correlation functions of luminous red galaxies in observation and in the \(\varLambda\)CDM model. Astrophys. J. Lett. 694, 83–86 (2009). doi:10.1088/0004-637X/694/1/L83

    Article  ADS  Google Scholar 

  • T. Okumura, Y.P. Jing, C. Li, Intrinsic ellipticity correlation of SDSS luminous red galaxies and misalignment with their host dark matter halos. Astrophys. J. 694, 214–221 (2009). doi:10.1088/0004-637X/694/1/214

    Article  ADS  Google Scholar 

  • E. Öpik, On the planes of the spiral nebulae. Observatory 46, 51–52 (1923a)

    ADS  Google Scholar 

  • E. Öpik, On the planes of the spiral nebulae. Observatory 46, 165–168 (1923b)

    ADS  Google Scholar 

  • E.J. Öpik, Preferential orientation of galaxies: on the possibility of detection. Ir. Astron. J. 9, 211 (1970)

    ADS  Google Scholar 

  • S.G. Patiri, J.E. Betancort-Rijo, F. Prada, A. Klypin, S. Gottlöber, Statistics of voids in the two-degree field galaxy redshift survey. Mon. Not. R. Astron. Soc. 369, 335–348 (2006). doi:10.1111/j.1365-2966.2006.10305.x

    Article  ADS  Google Scholar 

  • M.S. Pawlowski, J. Pflamm-Altenburg, P. Kroupa, The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way. Mon. Not. R. Astron. Soc. 423, 1109–1126 (2012). doi:10.1111/j.1365-2966.2012.20937.x

    Article  ADS  Google Scholar 

  • D.J. Paz, F. Stasyszyn, N.D. Padilla, Angular momentum-large-scale structure alignments in \(\varLambda\)CDM models and the SDSS. Mon. Not. R. Astron. Soc. 389, 1127–1136 (2008). doi:10.1111/j.1365-2966.2008.13655.x

    Article  ADS  Google Scholar 

  • D.J. Paz, M.A. Sgró, M. Merchán, N. Padilla, Alignments of galaxy group shapes with large-scale structure. Mon. Not. R. Astron. Soc. 414, 2029–2039 (2011). doi:10.1111/j.1365-2966.2011.18518.x

    Article  ADS  Google Scholar 

  • J.A. Peacock, Cosmological Physics, 1999

    MATH  Google Scholar 

  • J.A. Peacock, A.F. Heavens, The statistics of maxima in primordial density perturbations. Mon. Not. R. Astron. Soc. 217, 805–820 (1985)

    Article  ADS  Google Scholar 

  • P.J.E. Peebles, Origin of the angular momentum of galaxies. Astrophys. J. 155, 393 (1969). doi:10.1086/149876

    Article  ADS  Google Scholar 

  • M.J. Pereira, G.L. Bryan, Tidal torquing of elliptical galaxies in cluster environments. Astrophys. J. 721, 939–955 (2010). doi:10.1088/0004-637X/721/2/939

    Article  ADS  Google Scholar 

  • M.J. Pereira, J.R. Kuhn, Radial alignment of cluster galaxies. Astrophys. J. Lett. 627, 21–24 (2005). doi:10.1086/432089

    Article  ADS  Google Scholar 

  • M.J. Pereira, G.L. Bryan, S.P.D. Gill, Radial alignment in simulated clusters. Astrophys. J. 672, 825–833 (2008). doi:10.1086/523830

    Article  ADS  Google Scholar 

  • M. Plionis, Position angles and alignments of clusters of galaxies. Astrophys. J. Suppl. Ser. 95, 401–412 (1994). doi:10.1086/192104

    Article  ADS  Google Scholar 

  • M. Plionis, S. Basilakos, The cluster substructure-alignment connection. Mon. Not. R. Astron. Soc. 329, 47–51 (2002). doi:10.1046/j.1365-8711.2002.05177.x

    Article  ADS  Google Scholar 

  • C. Porciani, A. Dekel, Y. Hoffman, Testing tidal-torque theory—I. Spin amplitude and direction. Mon. Not. R. Astron. Soc. 332, 325–338 (2002a). doi:10.1046/j.1365-8711.2002.05305.x

    Article  ADS  Google Scholar 

  • C. Porciani, A. Dekel, Y. Hoffman, Testing tidal-torque theory—II. Alignment of inertia and shear and the characteristics of protohaloes. Mon. Not. R. Astron. Soc. 332, 339–351 (2002b). doi:10.1046/j.1365-8711.2002.05306.x

    Article  ADS  Google Scholar 

  • W.H. Press, P. Schechter, Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974). doi:10.1086/152650

    Article  ADS  Google Scholar 

  • J. Prieto, R. Jimenez, Z. Haiman, R.E. González, The origin of spin in galaxies: clues from simulations of atomic cooling halos. ArXiv e-prints (2014)

  • C. Ragone-Figueroa, M. Plionis, Environmental influences on the morphology and dynamics of group-sized haloes. Mon. Not. R. Astron. Soc. 377, 1785–1794 (2007). doi:10.1111/j.1365-2966.2007.11757.x

    Article  ADS  Google Scholar 

  • G. Reaves, The position angles of galaxies in Horologium. Publ. Astron. Soc. Pac. 70, 461–462 (1958). doi:10.1086/127270

    Article  ADS  Google Scholar 

  • M.J. Rees, J.P. Ostriker, Cooling, dynamics and fragmentation of massive gas clouds—clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977)

    Article  ADS  Google Scholar 

  • S. Refsdal, On the possibility of testing cosmological theories from the gravitational lens effect. Mon. Not. R. Astron. Soc. 132, 101 (1966)

    Article  ADS  Google Scholar 

  • M. Reinhardt, Orientation of galaxies and a magnetic ‘urfield’. Astrophys. Space Sci. 10, 363–382 (1971). doi:10.1007/BF00649681

    Article  ADS  Google Scholar 

  • M. Reinhardt, On the distribution of angular momenta of galaxies. Mon. Not. R. Astron. Soc. 156, 151 (1972)

    Article  ADS  Google Scholar 

  • J.H. Reynolds, Nebulæ, the galactic distribution of the large spiral. Mon. Not. R. Astron. Soc. 81, 129 (1920)

    Article  ADS  Google Scholar 

  • J.H. Reynolds, Nebulæ, the planes of the spiral, in relation to the line of sight. Mon. Not. R. Astron. Soc. 82, 510 (1922)

    Article  ADS  Google Scholar 

  • J.H. Reynolds, On the planes of the spiral nebulae. Observatory 46, 52–54 (1923a)

    ADS  Google Scholar 

  • J.H. Reynolds, The planes of the spiral nebulae. Observatory 46, 190–191 (1923b)

    ADS  Google Scholar 

  • H.J. Rood, W.A. Baum, Photographic brightness profiles of Coma Cluster galaxies. I. Catalogue of program galaxies. Astron. J. 72, 398–406 (1967). doi:10.1086/110240

    Article  ADS  Google Scholar 

  • G. Rossi, On the initial shear field of the cosmic web. Mon. Not. R. Astron. Soc. 421, 296–307 (2012). doi:10.1111/j.1365-2966.2011.20304.x

    ADS  Google Scholar 

  • E.S. Rykoff, E. Rozo, M.T. Busha, C.E. Cunha, A. Finoguenov, A. Evrard, J. Hao, B.P. Koester, A. Leauthaud, B. Nord, M. Pierre, R. Reddick, T. Sadibekova, E.S. Sheldon, R.H. Wechsler, redMaPPer. I. Algorithm and SDSS DR8 catalog. Astrophys. J. 785, 104 (2014). doi:10.1088/0004-637X/785/2/104

    Article  ADS  Google Scholar 

  • L. Sales, D.G. Lambas, Anisotropy in the distribution of satellites around primary galaxies in the 2dF Galaxy Redshift Survey: the Holmberg effect. Mon. Not. R. Astron. Soc. 348, 1236–1240 (2004). doi:10.1111/j.1365-2966.2004.07443.x

    Article  ADS  Google Scholar 

  • L. Sales, D.G. Lambas, Erratum: anisotropy in the distribution of satellites around primary galaxies in the 2dF Galaxy Redshift Survey: the Holmberg effect. Mon. Not. R. Astron. Soc. 395, 1184 (2009). doi:10.1111/j.1365-2966.2009.14765.x

    Article  ADS  Google Scholar 

  • L.V. Sales, J.F. Navarro, T. Theuns, J. Schaye, S.D.M. White, C.S. Frenk, R.A. Crain, C. Dalla Vecchia, The origin of discs and spheroids in simulated galaxies. Mon. Not. R. Astron. Soc. 423, 1544–1555 (2012). doi:10.1111/j.1365-2966.2012.20975.x

    Article  ADS  Google Scholar 

  • E. Salvador-Sole, J.M. Solanes, Tidally induced elongation and alignments of galaxy clusters. Astrophys. J. 417, 427 (1993). doi:10.1086/173323

    Article  ADS  Google Scholar 

  • A.G. Sánchez, F. Montesano, E.A. Kazin, E. Aubourg, F. Beutler, J. Brinkmann, J.R. Brownstein, A.J. Cuesta, K.S. Dawson, D.J. Eisenstein, S. Ho, K. Honscheid, M. Manera, C. Maraston, C.K. McBride, W.J. Percival, A.J. Ross, L. Samushia, D.J. Schlegel, D.P. Schneider, R. Skibba, D. Thomas, J.L. Tinker, R. Tojeiro, D.A. Wake, B.A. Weaver, M. White, I. Zehavi, The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples. Mon. Not. R. Astron. Soc. 440, 2692–2713 (2014). doi:10.1093/mnras/stu342

    Article  ADS  Google Scholar 

  • A. Sandage, K.C. Freeman, N.R. Stokes, The intrinsic flattening of e, so, and spiral galaxies as related to galaxy formation and evolution. Astrophys. J. 160, 831 (1970). doi:10.1086/150475

    Article  ADS  Google Scholar 

  • G.N. Sastry, Clusters associated with supergiant galaxies. Publ. Astron. Soc. Pac. 80, 252 (1968). doi:10.1086/128626

    Article  ADS  Google Scholar 

  • B.M. Schäfer, Galactic angular momenta and angular momentum correlations in the cosmological large-scale structure. Int. J. Mod. Phys. D 18, 173–222 (2009). doi:10.1142/S0218271809014388

    Article  ADS  MATH  Google Scholar 

  • B.M. Schäfer, P.M. Merkel, Galactic angular momenta and angular momentum couplings in the large-scale structure. Mon. Not. R. Astron. Soc. 421, 2751–2762 (2012). doi:10.1111/j.1365-2966.2011.20224.x

    Article  ADS  Google Scholar 

  • J. Schaye, R.A. Crain, R.G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C.S. Frenk, I.G. McCarthy, J.C. Helly, A. Jenkins, Y.M. Rosas-Guevara, S.D.M. White, M. Baes, C.M. Booth, P. Camps, J.F. Navarro, Y. Qu, A. Rahmati, T. Sawala, P.A. Thomas, J. Trayford, The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015). doi:10.1093/mnras/stu2058

    Article  ADS  Google Scholar 

  • F. Schmidt, D. Jeong, Large-scale structure with gravitational waves. II. Shear. Phys. Rev. D 86(8), 083513 (2012). doi:10.1103/PhysRevD.86.083513

    ADS  Google Scholar 

  • F. Schmidt, A. Leauthaud, R. Massey, J. Rhodes, M.R. George, A.M. Koekemoer, A. Finoguenov, M. Tanaka, A detection of weak-lensing magnification using galaxy sizes and magnitudes. Astrophys. J. Lett. 744, 22 (2012). doi:10.1088/2041-8205/744/2/L22

    Article  ADS  Google Scholar 

  • P. Schneider, Part 3: weak gravitational lensing, in Saas-Fee Advanced Course 33: Gravitational Lensing: Strong, Weak and Micro, ed. by G. Meylan, P. Jetzer, P. North, P. Schneider, C.S. Kochanek, J. Wambsganss, 2006, pp. 269–451

    Chapter  Google Scholar 

  • M.D. Schneider, S. Bridle, A halo model for intrinsic alignments of galaxy ellipticities. Mon. Not. R. Astron. Soc. 402, 2127–2139 (2010). doi:10.1111/j.1365-2966.2009.15956.x

    Article  ADS  Google Scholar 

  • P. Schneider, L. van Waerbeke, B. Jain, G. Kruse, A new measure for cosmic shear. Mon. Not. R. Astron. Soc. 296, 873–892 (1998). doi:10.1046/j.1365-8711.1998.01422.x

    Article  ADS  Google Scholar 

  • M.D. Schneider, C.S. Frenk, S. Cole, The shapes and alignments of dark matter halos. J. Cosmol. Astropart. Phys. 5, 30 (2012). doi:10.1088/1475-7516/2012/05/030

    Article  ADS  Google Scholar 

  • M.D. Schneider, S. Cole, C.S. Frenk, L. Kelvin, R. Mandelbaum, P. Norberg, J. Bland-Hawthorn, S. Brough, S. Driver, A. Hopkins, J. Liske, J. Loveday, A. Robotham, Galaxy And Mass Assembly (GAMA): galaxy radial alignments in GAMA groups. Mon. Not. R. Astron. Soc. 433, 2727–2738 (2013). doi:10.1093/mnras/stt855

    Article  ADS  Google Scholar 

  • T. Schrabback, J. Hartlap, B. Joachimi, M. Kilbinger, P. Simon, K. Benabed, M. Bradač, T. Eifler, T. Erben, C.D. Fassnacht, F.W. High, S. Hilbert, H. Hildebrandt, H. Hoekstra, K. Kuijken, P.J. Marshall, Y. Mellier, E. Morganson, P. Schneider, E. Semboloni, L. van Waerbeke, M. Velander, Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astron. Astrophys. 516, 63 (2010). doi:10.1051/0004-6361/200913577

    Article  ADS  Google Scholar 

  • R. Scranton, B. Ménard, G.T. Richards, R.C. Nichol, A.D. Myers, B. Jain, A. Gray, M. Bartelmann, R.J. Brunner, A.J. Connolly, J.E. Gunn, R.K. Sheth, N.A. Bahcall, J. Brinkman, J. Loveday, D.P. Schneider, A. Thakar, D.G. York, Detection of cosmic magnification with the Sloan Digital Sky Survey. Astrophys. J. 633, 589–602 (2005). doi:10.1086/431358

    Article  ADS  Google Scholar 

  • C. Seitz, P. Schneider, Steps towards nonlinear cluster inversion through gravitational distortions. III. Including a redshift distribution of the sources. Astron. Astrophys. 318, 687–699 (1997)

    ADS  Google Scholar 

  • E. Semboloni, C. Heymans, L. van Waerbeke, P. Schneider, Sources of contamination to weak lensing three-point statistics: constraints from N-body simulations. Mon. Not. R. Astron. Soc. 388, 991–1000 (2008). doi:10.1111/j.1365-2966.2008.13478.x

    Article  ADS  Google Scholar 

  • N.A. Sharp, D.N.C. Lin, S.D.M. White, A test of the tidal hypothesis for the origin of galactic angular momentum. Mon. Not. R. Astron. Soc. 187, 287–291 (1979)

    Article  ADS  Google Scholar 

  • R.K. Sheth, G. Tormen, Large-scale bias and the peak background split. Mon. Not. R. Astron. Soc. 308, 119–126 (1999). doi:10.1046/j.1365-8711.1999.02692.x

    Article  ADS  Google Scholar 

  • R.K. Sheth, R. van de Weygaert, A hierarchy of voids: much ado about nothing. Mon. Not. R. Astron. Soc. 350, 517–538 (2004). doi:10.1111/j.1365-2966.2004.07661.x

    Article  ADS  Google Scholar 

  • J. Shi, H. Wang, H. Mo, Flow patterns around dark matter halos: the link between halo dynamical properties and large scale tidal field. ArXiv e-prints (2015)

  • C. Sifón, H. Hoekstra, M. Cacciato, M. Viola, F. Köhlinger, R.F.J. van der Burg, D.J. Sand, M.L. Graham, Constraints on the alignment of galaxies in galaxy clusters from ∼14 000 spectroscopic members. Astron. Astrophys. 575, 48 (2015). doi:10.1051/0004-6361/201424435

    Article  ADS  Google Scholar 

  • J. Silk, M.J. Rees, Quasars and galaxy formation. Astron. Astrophys. 331, 1–4 (1998)

    ADS  Google Scholar 

  • F. Simpson, C. Heymans, D. Parkinson, C. Blake, M. Kilbinger, J. Benjamin, T. Erben, H. Hildebrandt, H. Hoekstra, T.D. Kitching, Y. Mellier, L. Miller, L. Van Waerbeke, J. Coupon, L. Fu, J. Harnois-Déraps, M.J. Hudson, K. Kuijken, B. Rowe, T. Schrabback, E. Semboloni, S. Vafaei, M. Velander, CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions. Mon. Not. R. Astron. Soc. 429, 2249–2263 (2013). doi:10.1093/mnras/sts493

    Article  ADS  Google Scholar 

  • S. Singh, R. Mandelbaum, S. More, Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies. ArXiv e-prints (2014)

  • A. Slosar, M. White, Alignment of galaxy spins in the vicinity of voids. J. Cosmol. Astropart. Phys. 6, 9 (2009). doi:10.1088/1475-7516/2009/06/009

    Article  ADS  Google Scholar 

  • A. Smargon, R. Mandelbaum, N. Bahcall, M. Niederste-Ostholt, Detection of intrinsic cluster alignments to 100 h−1 Mpc in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 423, 856–861 (2012). doi:10.1111/j.1365-2966.2012.20923.x

    Article  ADS  Google Scholar 

  • D. Spergel, N. Gehrels, J. Breckinridge, M. Donahue, A. Dressler, B.S. Gaudi, T. Greene, O. Guyon, C. Hirata, J. Kalirai, N.J. Kasdin, W. Moos, S. Perlmutter, M. Postman, B. Rauscher, J. Rhodes, Y. Wang, D. Weinberg, J. Centrella, W. Traub, C. Baltay, J. Colbert, D. Bennett, A. Kiessling, B. Macintosh, J. Merten, M. Mortonson, M. Penny, E. Rozo, D. Savransky, K. Stapelfeldt, Y. Zu, C. Baker, E. Cheng, D. Content, J. Dooley, M. Foote, R. Goullioud, K. Grady, C. Jackson, J. Kruk, M. Levine, M. Melton, C. Peddie, J. Ruffa, S. Shaklan, Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA final report. ArXiv e-prints (2013)

  • R.J. Splinter, A.L. Melott, A.M. Linn, C. Buck, J. Tinker, The ellipticity and orientation of clusters of galaxies in N-body experiments. Astrophys. J. 479, 632–641 (1997)

    Article  ADS  Google Scholar 

  • M.F. Struble, P.J.E. Peebles, A new application of Binggeli’s test for large-scale alignment of clusters of galaxies. Astron. J. 90, 582–589 (1985). doi:10.1086/113763

    Article  ADS  Google Scholar 

  • P.M. Sutter, G. Lavaux, B.D. Wandelt, D.H. Weinberg, M.S. Warren, A. Pisani, Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask. Mon. Not. R. Astron. Soc. 442, 3127–3137 (2014). doi:10.1093/mnras/stu1094

    Article  ADS  Google Scholar 

  • A.N. Taylor, T.D. Kitching, D.J. Bacon, A.F. Heavens, Probing dark energy with the shear-ratio geometric test. Mon. Not. R. Astron. Soc. 374, 1377–1403 (2007). doi:10.1111/j.1365-2966.2006.11257.x

    Article  ADS  Google Scholar 

  • E. Tempel, N.I. Libeskind, Galaxy spin alignment in filaments and sheets: observational evidence. Astrophys. J. Lett. 775, 42 (2013). doi:10.1088/2041-8205/775/2/L42

    Article  ADS  Google Scholar 

  • E. Tempel, R.S. Stoica, E. Saar, Evidence for spin alignment of spiral and elliptical/S0 galaxies in filaments. Mon. Not. R. Astron. Soc. 428, 1827–1836 (2013). doi:10.1093/mnras/sts162

    Article  ADS  Google Scholar 

  • E. Tempel, Q. Guo, R. Kipper, N.I. Libeskind, The alignment of satellite galaxies and cosmic filaments: observations and simulations. Mon. Not. R. Astron. Soc. 450, 2727–2738 (2015). doi:10.1093/mnras/stv919

    Article  ADS  Google Scholar 

  • A. Tenneti, R. Mandelbaum, T. Di Matteo, Y. Feng, N. Khandai, Galaxy shapes and intrinsic alignments in the MassiveBlack-II simulation. Mon. Not. R. Astron. Soc. 441, 470–485 (2014). doi:10.1093/mnras/stu586

    Article  ADS  Google Scholar 

  • A. Tenneti, S. Singh, R. Mandelbaum, T.D. Matteo, Y. Feng, N. Khandai, Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics. Mon. Not. R. Astron. Soc. 448, 3522–3544 (2015). doi:10.1093/mnras/stv272

    Article  ADS  Google Scholar 

  • L.A. Thompson, The angular momentum properties of galaxies in rich clusters. Astrophys. J. 209, 22–34 (1976). doi:10.1086/154689

    Article  ADS  Google Scholar 

  • M.A. Troxel, M. Ishak, Cross-correlation between cosmic microwave background lensing and galaxy intrinsic alignment as a contaminant to gravitational lensing cross-correlated probes of the Universe. Phys. Rev. D 89(6), 063528 (2014a). doi:10.1103/PhysRevD.89.063528

    ADS  Google Scholar 

  • M.A. Troxel, M. Ishak, The Intrinsic alignment of galaxies and its impact on weak gravitational lensing in an era of precision cosmology. ArXiv e-prints (2014b)

  • I. Trujillo, C. Carretero, S.G. Patiri, Detection of the effect of cosmological large-scale structure on the orientation of galaxies. Astrophys. J. Lett. 640, 111–114 (2006). doi:10.1086/503548

    Article  ADS  Google Scholar 

  • M.P. van Daalen, J. Schaye, The contributions of matter inside and outside of haloes to the matter power spectrum. ArXiv e-prints (2015)

  • F.C. van den Bosch, T. Abel, R.A.C. Croft, L. Hernquist, S.D.M. White, The angular momentum of gas in protogalaxies. I. Implications for the formation of disk galaxies. Astrophys. J. 576, 21–35 (2002). doi:10.1086/341619

    Article  ADS  Google Scholar 

  • M. van Haarlem, R. van de Weygaert, Velocity fields and alignments of clusters in gravitational instability scenarios. Astrophys. J. 418, 544 (1993). doi:10.1086/173416

    Article  ADS  Google Scholar 

  • E. van Uitert, H. Hoekstra, T. Schrabback, D.G. Gilbank, M.D. Gladders, H.K.C. Yee, Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing. Astron. Astrophys. 545, 71 (2012). doi:10.1051/0004-6361/201219295

    Article  Google Scholar 

  • L. Van Waerbeke, Y. Mellier, T. Erben, J.C. Cuillandre, F. Bernardeau, R. Maoli, E. Bertin, H.J. McCracken, O. Le Fèvre, B. Fort, M. Dantel-Fort, B. Jain, P. Schneider, Detection of correlated galaxy ellipticities from CFHT data: first evidence for gravitational lensing by large-scale structures. Astron. Astrophys. 358, 30–44 (2000)

    ADS  Google Scholar 

  • J. Varela, J. Betancort-Rijo, I. Trujillo, E. Ricciardelli, The orientation of disk galaxies around large cosmic voids. Astrophys. J. 744, 82 (2012). doi:10.1088/0004-637X/744/2/82

    Article  ADS  Google Scholar 

  • J. Varga, I. Csabai, L. Dobos, Refined position angle measurements for galaxies of the SDSS Stripe 82 co-added dataset. Astron. Nachr. 334, 1016 (2013). doi:10.1002/asna.201211984

    Article  ADS  Google Scholar 

  • M. Velliscig, M. Cacciato, J. Schaye, R.G. Bower, R.A. Crain, M.P. van Daalen, C. Dalla Vecchia, C.S. Frenk, M. Furlong, I.G. McCarthy, M. Schaller, T. Theuns, The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. ArXiv e-prints (2015)

  • M. Viola, T.D. Kitching, B. Joachimi, On the probability distributions of ellipticity. Mon. Not. R. Astron. Soc. 439, 1909–1932 (2014). doi:10.1093/mnras/stu071

    Article  ADS  Google Scholar 

  • M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, D. Nelson, L. Hernquist, Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. Mon. Not. R. Astron. Soc. 444, 1518–1547 (2014). doi:10.1093/mnras/stu1536

    Article  ADS  Google Scholar 

  • C.F. von Weizsäcker, The evolution of galaxies and stars. Astrophys. J. 114, 165 (1951). doi:10.1086/145462

    Article  MathSciNet  Google Scholar 

  • Y. Wang, X. Yang, H.J. Mo, C. Li, F.C. van den Bosch, Z. Fan, X. Chen, Probing the intrinsic shape and alignment of dark matter haloes using SDSS galaxy groups. Mon. Not. R. Astron. Soc. 385, 1511–1522 (2008). doi:10.1111/j.1365-2966.2008.12927.x

    Article  ADS  Google Scholar 

  • Y. Wang, C. Park, X. Yang, Y.-Y. Choi, X. Chen, Alignments of group galaxies with neighboring groups. Astrophys. J. 703, 951–963 (2009). doi:10.1088/0004-637X/703/1/951

    Article  ADS  Google Scholar 

  • Z.L. Wen, J.L. Han, F.S. Liu, A catalog of 132,684 clusters of galaxies identified from Sloan Digital Sky Survey III. Astrophys. J. Suppl. Ser. 199, 34 (2012). doi:10.1088/0067-0049/199/2/34

    Article  ADS  Google Scholar 

  • M.J. West, Groups of galaxies and large-scale structure. Astrophys. J. 344, 535–542 (1989). doi:10.1086/167824

    Article  ADS  Google Scholar 

  • M.J. West, A. Dekel, A. Oemler Jr., Cosmological alignment of clusters of galaxies with their surroundings—a problem for cold dark matter? Astrophys. J. 336, 46–57 (1989). doi:10.1086/166991

    Article  ADS  Google Scholar 

  • M.J. West, D.H. Weinberg, A. Dekel, Properties of clusters of galaxies in the explosion scenario. Astrophys. J. 353, 329–343 (1990). doi:10.1086/168620

    Article  ADS  Google Scholar 

  • M.J. West, J.V. Villumsen, A. Dekel, Filamentary superclustering in a universe dominated by cold dark matter. Astrophys. J. 369, 287–299 (1991). doi:10.1086/169760

    Article  ADS  Google Scholar 

  • M.J. West, C. Jones, W. Forman, Substructure: clues to the formation of clusters of galaxies. Astrophys. J. Lett. 451, 5 (1995). doi:10.1086/309673

    Article  ADS  Google Scholar 

  • S.D.M. White, Angular momentum growth in protogalaxies. Astrophys. J. 286, 38–41 (1984). doi:10.1086/162573

    Article  ADS  Google Scholar 

  • D.M. Wittman, J.A. Tyson, D. Kirkman, I. Dell’Antonio, G. Bernstein, Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales. Nature 405, 143–148 (2000)

    Article  ADS  Google Scholar 

  • C. Wolf, S. Dye, M. Kleinheinrich, K. Meisenheimer, H.-W. Rix, L. Wisotzki, Deep BVR photometry of the Chandra Deep Field South from the COMBO-17 survey. Astron. Astrophys. 377, 442–449 (2001). doi:10.1051/0004-6361:20011142

    Article  ADS  Google Scholar 

  • S.P. Wyatt Jr., F.G. Brown, Position angles and shapes of galaxies in Cetus. Astron. J. 60, 415 (1955). doi:10.1086/107250

    Article  ADS  Google Scholar 

  • X. Yang, F.C. van den Bosch, H.J. Mo, S. Mao, X. Kang, S.M. Weinmann, Y. Guo, Y.P. Jing, The alignment between the distribution of satellites and the orientation of their central galaxy. Mon. Not. R. Astron. Soc. 369, 1293–1302 (2006). doi:10.1111/j.1365-2966.2006.10373.x

    Article  ADS  Google Scholar 

  • D.G. York, J. Adelman, J.E. Anderson Jr., S.F. Anderson, J. Annis, N.A. Bahcall, J.A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W.N. Boroski, S. Bracker, C. Briegel, J.W. Briggs, J. Brinkmann, R. Brunner, S. Burles, L. Carey, M.A. Carr, F.J. Castander, B. Chen, P.L. Colestock, A.J. Connolly, J.H. Crocker, I. Csabai, P.C. Czarapata, J.E. Davis, M. Doi, T. Dombeck, D. Eisenstein, N. Ellman, B.R. Elms, M.L. Evans, X. Fan, G.R. Federwitz, L. Fiscelli, S. Friedman, J.A. Frieman, M. Fukugita, B. Gillespie, J.E. Gunn, V.K. Gurbani, E. de Haas, M. Haldeman, F.H. Harris, J. Hayes, T.M. Heckman, G.S. Hennessy, R.B. Hindsley, S. Holm, D.J. Holmgren, C.-h. Huang, C. Hull, D. Husby, S.-I. Ichikawa, T. Ichikawa, Ž. Ivezić, S. Kent, R.S.J. Kim, E. Kinney, M. Klaene, A.N. Kleinman, S. Kleinman, G.R. Knapp, J. Korienek, R.G. Kron, P.Z. Kunszt, D.Q. Lamb, B. Lee, R.F. Leger, S. Limmongkol, C. Lindenmeyer, D.C. Long, C. Loomis, J. Loveday, R. Lucinio, R.H. Lupton, B. MacKinnon, E.J. Mannery, P.M. Mantsch, B. Margon, P. McGehee, T.A. McKay, A. Meiksin, A. Merelli, D.G. Monet, J.A. Munn, V.K. Narayanan, T. Nash, E. Neilsen, R. Neswold, H.J. Newberg, R.C. Nichol, T. Nicinski, M. Nonino, N. Okada, S. Okamura, J.P. Ostriker, R. Owen, A.G. Pauls, J. Peoples, R.L. Peterson, D. Petravick, J.R. Pier, A. Pope, R. Pordes, A. Prosapio, R. Rechenmacher, T.R. Quinn, G.T. Richards, M.W. Richmond, C.H. Rivetta, C.M. Rockosi, K. Ruthmansdorfer, D. Sandford, D.J. Schlegel, D.P. Schneider, M. Sekiguchi, G. Sergey, K. Shimasaku, W.A. Siegmund, S. Smee, J.A. Smith, S. Snedden, R. Stone, C. Stoughton, M.A. Strauss, C. Stubbs, M. SubbaRao, A.S. Szalay, I. Szapudi, G.P. Szokoly, A.R. Thakar, C. Tremonti, D.L. Tucker, A. Uomoto, D. Vanden Berk, M.S. Vogeley, P. Waddell, S.-i. Wang, M. Watanabe, D.H. Weinberg, B. Yanny, N. Yasuda (SDSS Collaboration), The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000). doi:10.1086/301513

    Article  ADS  Google Scholar 

  • I. Zehavi, Z. Zheng, D.H. Weinberg, M.R. Blanton, N.A. Bahcall, A.A. Berlind, J. Brinkmann, J.A. Frieman, J.E. Gunn, R.H. Lupton, R.C. Nichol, W.J. Percival, D.P. Schneider, R.A. Skibba, M.A. Strauss, M. Tegmark, D.G. York, Galaxy clustering in the completed SDSS Redshift Survey: the dependence on color and luminosity. Astrophys. J. 736, 59 (2011). doi:10.1088/0004-637X/736/1/59

    Article  ADS  Google Scholar 

  • Y.B. Zel’dovich, Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970)

    ADS  Google Scholar 

  • P. Zhang, Self-calibration of gravitational shear-galaxy intrinsic ellipticity correlation in weak lensing surveys. Astrophys. J. 720, 1090–1101 (2010). doi:10.1088/0004-637X/720/2/1090

    Article  ADS  Google Scholar 

  • Y. Zhang, X. Yang, A. Faltenbacher, V. Springel, W. Lin, H. Wang, The spin and orientation of dark matter halos within cosmic filaments. Astrophys. J. 706, 747–761 (2009). doi:10.1088/0004-637X/706/1/747

    Article  ADS  Google Scholar 

  • Y. Zhang, X. Yang, H. Wang, L. Wang, H.J. Mo, F.C. van den Bosch, Alignments of galaxies within cosmic filaments from SDSS DR7. Astrophys. J. 779, 160 (2013). doi:10.1088/0004-637X/779/2/160

    Article  ADS  Google Scholar 

  • Y. Zhang, X. Yang, H. Wang, L. Wang, W. Luo, H.J. Mo, F.C. van den Bosch, Spin alignments of spiral galaxies within the large-scale structure from SDSS DR7. Astrophys. J. 798, 17 (2015). doi:10.1088/0004-637X/798/1/17

    Article  ADS  Google Scholar 

  • F. Zwicky, On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86, 217 (1937). doi:10.1086/143864

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the International Space Science Institute Bern for two workshops at which this work was conceived. We thank E. Brunnstrom for an investigation into alignments in Palomar Sky Survey catalogues, and our referee, J. Blazek, for many helpful comments and stimulating discussions. We are grateful to B. Binggeli, C. Heymans, S. Singh, A. Slosar, A. Tenneti, and I. Trujillo for sharing their data.

BJ acknowledges support by an STFC Ernest Rutherford Fellowship, grant reference ST/J004421/1. MC was supported by the Netherlands organisation for Scientific Research (NWO) Vidi grant 639.042.814. TDK is supported by a Royal Society URF. AL acknowledges the support of the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 624151. RM acknowledges the support of NASA ROSES 12-EUCLID12-0004. CS and HH acknowledge support from the European Research Council under FP7 grant number 279396. AK was supported in part by JPL, run under a contract by Caltech for NASA. AK was also supported in part by NASA ROSES 13-ATP13-0019 and NASA ROSES 12-EUCLID12-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Joachimi.

Ethics declarations

Compliance with Ethical Standards

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joachimi, B., Cacciato, M., Kitching, T.D. et al. Galaxy Alignments: An Overview. Space Sci Rev 193, 1–65 (2015). https://doi.org/10.1007/s11214-015-0177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0177-4

Keywords

Navigation