Skip to main content
Log in

Solar Dynamics, Rotation, Convection and Overshoot

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We discuss recent observational, theoretical and modeling progress made in understanding the Sun’s internal dynamics, including its rotation, meridional flow, convection and overshoot. Over the past few decades, substantial theoretical and observational effort has gone into appreciating these aspects of solar dynamics. A review of these observations, related helioseismic methodology and inference and computational results in relation to these problems is undertaken here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Though see Rempel (2005b) for an example of a time-dependent mean field model in which gyroscopic pumping is the dominant meridional flow driver.

References

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). doi:10.1146/annurev.astro.46.060407.145222

    Article  ADS  Google Scholar 

  • S.A. Balbus, E. Schaan, The stability of stratified, rotating systems and the generation of vorticity in the Sun. Mon. Not. R. Astron. Soc. 426, 1546–1557 (2012)

    Article  ADS  Google Scholar 

  • S.A. Balbus, J. Bonart, H.N. Latter, N.O. Weiss, Differential rotation and convection in the Sun. Mon. Not. R. Astron. Soc. 400, 176–182 (2009)

    Article  ADS  Google Scholar 

  • C.S. Baldner, J. Schou, Effects of asymmetric flows in solar convection on oscillation modes. Astrophys. J. Lett. 760, 1 (2012). doi:10.1088/2041-8205/760/1/L1

    Article  ADS  Google Scholar 

  • S. Basu, H.M. Antia, D. Narasimha, Helioseismic measurement of the extent of overshoot below the solar convection zone. Mon. Not. R. Astron. Soc. 267, 209 (1994)

    Article  ADS  Google Scholar 

  • B. Beeck, R. Collet, M. Steffen, M. Asplund, R.H. Cameron, B. Freytag, W. Hayek, H.-G. Ludwig, M. Schüssler, Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes. Astron. Astrophys. 539, 121 (2012). doi:10.1051/0004-6361/201118252

    Article  ADS  Google Scholar 

  • D.J. Bercik, S. Basu, D. Georgobiani, A. Nordlund, R.F. Stein, Solar magneto-convection, in Cool Stars, Stellar Systems, and the Sun 10, ed. by R.A. Donahue, J.A. Bookbinder. ASP Conf. Ser., vol. 154 (Astronomical Society of the Pacific, San Francisco, 1998), p. 568

    Google Scholar 

  • J. Bouvier, Observational studies of stellar rotation, in EAS Publications Series, vol. 62, ed. by P. Hennebelle, C. Charbonnel (2013), pp. 143–168. doi:10.1051/eas/1362005

    Google Scholar 

  • N.H. Brummell, T.L. Clune, J. Toomre, Penetration and overshooting in turbulent compressible convection. Astrophys. J. 570, 825–854 (2002). doi:10.1086/339626

    Article  ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073–1098 (2004)

    Article  ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742, 79 (2011). doi:10.1088/0004-637X/742/2/79

    Article  ADS  Google Scholar 

  • A.S. Brun, J. Toomre, Turbulent convection under the influence of rotation: sustaining a strong differential rotation. Astrophys. J. 570, 865–885 (2002)

    Article  ADS  Google Scholar 

  • M.C.M. Cheung, M. Schüssler, F. Moreno-Insertis, The origin of the reversed granulation in the solar photosphere. Astron. Astrophys. 461, 1163–1171 (2007)

    Article  ADS  Google Scholar 

  • M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010)

    Article  ADS  Google Scholar 

  • J. Christensen-Dalsgaard, M.J.P.F.G. Monteiro, M.J. Thompson, Helioseismic estimation of convective overshoot in the Sun. Mon. Not. R. Astron. Soc. 276, 283–292 (1995)

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard, M.J.P.F.G. Monteiro, M. Rempel, M.J. Thompson, A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology. Mon. Not. R. Astron. Soc. 414, 1158–1174 (2011). doi:10.1111/j.1365-2966.2011.18460.x

    Article  ADS  Google Scholar 

  • L. Deng, D.R. Xiong, How to define the boundaries of a convective zone, and how extended is overshooting? Mon. Not. R. Astron. Soc. 386, 1979–1989 (2008). doi:10.1111/j.1365-2966.2008.12969.x

    Article  ADS  Google Scholar 

  • F.-L. Deubner, D. Gough, Helioseismology: oscillations as a diagnostic of the solar interior. Annu. Rev. Astron. Astrophys. 22, 593–619 (1984). doi:10.1146/annurev.aa.22.090184.003113

    Article  ADS  Google Scholar 

  • M.P. di Mauro, D. Cardini, M. Marconi, Synergies Between Solar and Stellar Modelling (2010)

    Book  Google Scholar 

  • M. Dikpati, Generating the Suns global meridional circulation from differential rotation and turbulent Reynolds stress. Mon. Not. R. Astron. Soc. 438, 2380–2394 (2014)

    Article  ADS  Google Scholar 

  • T.L. Duvall Jr., Nonaxisymmetric variations deep in the convection zone, in GONG+ 2002. Local and Global Helioseismology: The Present and Future, ed. by H. Sawaya-Lacoste, ESA Special Publication, vol. 517 (ESA, Noordwijk, 2003), pp. 259–262

    Google Scholar 

  • T.L. Duvall Jr., S.M. Jefferies, J.W. Harvey, M.A. Pomerantz, Time-distance helioseismology. Nature 362, 430–432 (1993). doi:10.1038/362430a0

    Article  ADS  Google Scholar 

  • A. Eff-Darwich, S.G. Korzennik, The dynamics of the solar radiative zone. Sol. Phys. 287, 43–56 (2013). doi:10.1007/s11207-012-0048-z

    Article  ADS  Google Scholar 

  • J.R. Elliott, M.S. Miesch, J. Toomre, Turbulent solar convection and its coupling with rotation: the effect of Prandtl number and thermal boundary conditions on the resulting differential rotation. Astrophys. J. 533, 546–556 (2000)

    Article  ADS  Google Scholar 

  • N.A. Featherstone, M.S. Miesch, Meridional circulation in solar and stellar convection zones (2014, submitted). http://arxiv.org/abs/1501.06501

  • F. Gallet, J. Bouvier, Improved angular momentum evolution model for solar-like stars. Astron. Astrophys. 556, 36 (2013). doi:10.1051/0004-6361/201321302

    Article  ADS  Google Scholar 

  • T. Gastine, J. Wicht, J.M. Aurnou, Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156–172 (2013)

    Article  ADS  Google Scholar 

  • T. Gastine, R.K. Yadav, J. Morin, A. Reiners, J. Wicht, From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. Lett. 438, 76–80 (2014)

    Article  ADS  Google Scholar 

  • M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, 133–137 (2010)

    Article  ADS  Google Scholar 

  • P.A. Gilman, Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell I. Geophys. Astrophys. Fluid Dyn. 8, 93–135 (1977)

    Article  ADS  MATH  Google Scholar 

  • L. Gizon, A.C. Birch, Helioseismology challenges models of solar convection. Proc. Nat. Acad. Sci. 109, 11896–11897 (2012)

    Article  ADS  Google Scholar 

  • L. Gizon, A.C. Birch, H.C. Spruit, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289–338 (2010). doi:10.1146/annurev-astro-082708-101722

    Article  ADS  Google Scholar 

  • I. González Hernández, J. Patrón, R.S. Bogart, T. SOI Ring Diagram Team, Meridional flows from ring diagram analysis. Astrophys. J. Lett. 510, 153–156 (1999). doi:10.1086/311811

    Article  ADS  Google Scholar 

  • I. González Hernández, R. Komm, F. Hill, R. Howe, T. Corbard, D.A. Haber, Meridional circulation variability from large-aperture ring-diagram analysis of global oscillation network group and Michelson Doppler Imager data. Astrophys. J. 638, 576–583 (2006). doi:10.1086/498642

    Article  ADS  Google Scholar 

  • I. González Hernández, S. Kholikov, F. Hill, R. Howe, R. Komm, Subsurface meridional circulation in the active belts. Sol. Phys. 252, 235–245 (2008). doi:10.1007/s11207-008-9264-y

    Article  ADS  Google Scholar 

  • I. González Hernández, R. Howe, R. Komm, F. Hill, Meridional circulation during the extended solar minimum: another component of the torsional oscillation? Astrophys. J. Lett. 713, 16–20 (2010). doi:10.1088/2041-8205/713/1/L16

    Article  ADS  Google Scholar 

  • D.O. Gough, The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456 (1969). doi:10.1175/1520-0469(1969)026<0448:TAAFTC>2.0.CO;2

    Article  ADS  Google Scholar 

  • D.O. Gough, Mixing-length theory for pulsating stars. Astrophys. J. 214, 196–213 (1977). doi:10.1086/155244

    Article  ADS  Google Scholar 

  • G. Guerrero, P.K. Smolarkiewicz, A.G. Kosovichev, N.N. Mansour, Differential rotation in solar-like stars from global simulations. Astrophys. J. 779, 176 (2013a), 13 pp.

    Article  ADS  Google Scholar 

  • G. Guerrero, P.K. Smolarkiewicz, A. Kosovichev, N. Mansour, Solar differential rotation: hints to reproduce a near-surface shear layer in global simulations, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. by A.G. Kosivichev, E.M. de Gouveia Dal Pino, Y. Yan (IAU, Paris, 2013b), p. 9

    Google Scholar 

  • D. Haber, B. Hindman, J. Toomre, R.S. Bogart, Large-scale circulations using ring analysis, in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun. ESA Special Publication, vol. 624 (2006)

    Google Scholar 

  • S.M. Hanasoge, T.L. Duvall, M.L. DeRosa, Seismic constraints on interior solar convection. Astrophys. J. 712, 98–102 (2010)

    Article  ADS  Google Scholar 

  • S.M. Hanasoge, T.L. Duvall, K.R. Sreenivasan, Anomalously weak solar convection. Proc. Nat. Acad. Sci. (2012). doi:10.1073/pnas.1206570109

    Google Scholar 

  • C.J. Hansen, J.P. Cox, H.M. van Horn, The effects of differential rotation on the splitting of nonradial modes of stellar oscillation. Astrophys. J. 217, 151–159 (1977). doi:10.1086/155564

    Article  ADS  Google Scholar 

  • J.W. Harvey, F. Hill, R.P. Hubbard, J.R. Kennedy, J.W. Leibacher, J.A. Pintar, P.A. Gilman, R.W. Noyes, A.M. Title, J. Toomre, R.K. Ulrich, A. Bhatnagar, J.A. Kennewell, W. Marquette, J. Patron, O. Saa, E. Yasukawa, The global oscillation network group (GONG) project. Science 272, 1284–1286 (1996). doi:10.1126/science.272.5266.1284

    Article  ADS  Google Scholar 

  • D.H. Hathaway, Supergranules as probes of the Sun’s meridional circulation. Astrophys. J. 760, 84 (2012). doi:10.1088/0004-637X/760/1/84

    Article  ADS  Google Scholar 

  • D.H. Hathaway, L. Upton, O. Colegrove, Giant convection cells found on the sun. Science 342, 1217–1219 (2013). doi:10.1126/science.1244682

    Article  ADS  Google Scholar 

  • D.H. Hathaway, J.G. Beck, R.S. Bogart, K.T. Bachmann, G. Khatri, J.M. Petitto, S. Han, J. Raymond, The photospheric convection spectrum. Sol. Phys. 193, 299–312 (2000). doi:10.1023/A:1005200809766

    Article  ADS  Google Scholar 

  • T. Heinemann, Å. Nordlund, G.B. Scharmer, H.C. Spruit, MHD simulations of penumbra fine structure. Astrophys. J. 669, 1390–1394 (2007)

    Article  ADS  Google Scholar 

  • F. Hill, Rings and trumpets—three-dimensional power spectra of solar oscillations. Astrophys. J. 333, 996–1013 (1988). doi:10.1086/166807

    Article  ADS  Google Scholar 

  • H. Hotta, M. Rempel, T. Yokoyama, High-resolution calculations of the solar global convection with the reduced speed of sound technique. I. The structure of the convection and the magnetic field without the rotation. Astrophys. J. 786, 24 (2014a), 18 pp.

    Article  ADS  Google Scholar 

  • H. Hotta, M. Rempel, T. Yokoyama, High-resolution calculations of the solar global convection with the reduced speed of sound technique. II. Near surface shear layer with the rotation (2014b). doi:10.1088/0004-637X/786/1/24

  • R. Howard, B.J. Labonte, The sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett. 239, 33–36 (1980). doi:10.1086/183286

    Article  ADS  Google Scholar 

  • R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009). doi:10.12942/lrsp-2009-1

    Article  ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J. Lett. 533, 163–166 (2000). doi:10.1086/312623

    Article  ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, J. Schou, M.J. Thompson, A note on the torsional oscillation at solar minimum. Astrophys. J. Lett. 701, 87–90 (2009). doi:10.1088/0004-637X/701/2/L87

    Article  ADS  Google Scholar 

  • R. Howe, T.P. Larson, J. Schou, F. Hill, R. Komm, J. Christensen-Dalsgaard, M.J. Thompson, First global rotation inversions of HMI data. J. Phys. Conf. Ser. 271, 012061 (2011)

    Article  ADS  Google Scholar 

  • D.W. Hughes, R. Rosner, N.O. Weiss (eds.), The Solar Tachocline (Cambridge Univ. Press, Cambridge, 2007)

    Google Scholar 

  • L. Jouve, A.S. Brun, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239–250 (2007). doi:10.1051/0004-6361:20077070

    Article  ADS  Google Scholar 

  • P.J. Käpylä, M.J. Korpi, A. Brandenburg, D. Mitra, R. Tavakol, Convective dynamos in spherical wedge geometry. Astron. Nachr. 331, 73 (2010). doi:10.1002/asna.200911252

    Article  ADS  MATH  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, G. Guerrero, A. Brandenburg, P. Chatterjee, Reynolds stress and heat flux in spherical shell convection. Astron. Astrophys. 531, 162 (2011). doi:10.1051/0004-6361/201015884

    Article  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, A. Brandenburg, Confirmation of bistable stellar differential rotation profiles. Astron. Astrophys. (2014). doi:10.1051/0004-6361/201423412

    Google Scholar 

  • P.J. Käpylä, M.J. Mantere, G. Guerrero, A. Brandenburg, P. Chatterjee, Reynolds stress and heat flux in spherical shell convection. Astron. Astrophys. 531, 162 (2011), 17 pp.

    Article  Google Scholar 

  • L.L. Kitchatinov, Theory of differential rotation and meridional circulation, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. by A.G. Kosovichev, E.M. de Gouveia Dal Pino, Y. Yan. Proc. IAU Symposium, vol. 294 (2013), pp. 399–410. doi:10.1017/S1743921313002834. http://adsabs.harvard.edu/abs/2013IAUS..294..399K. arXiv:1210.7041. Provided by the SAO/NASA Astrophysics Data System

    Google Scholar 

  • L.L. Kitchatinov, G. Rüdiger, Differential rotation in solar-type stars: revisiting the Taylor-number puzzle. Astron. Astrophys. 299, 446–452 (1995)

    ADS  Google Scholar 

  • I.N. Kitiashvili, A.G. Kosovichev, A.A. Wray, N.N. Mansour, Mechanism of spontaneous formation of stable magnetic structures on the Sun. Astrophys. J. 719, 307–312 (2010)

    Article  ADS  Google Scholar 

  • I.N. Kitiashvili, A.G. Kosovichev, N.N. Mansour, A.A. Wray, Dynamics of magnetized vortex tubes in the solar chromosphere. Astrophys. J. 751, 21 (2012)

    Article  ADS  Google Scholar 

  • R. Komm, R. Howe, F. Hill, I. González Hernández, C. Toner, Kinetic Helicity density in solar subsurface layers and flare activity of active regions. Astrophys. J. 630, 1184–1193 (2005). doi:10.1086/432031

    Article  ADS  Google Scholar 

  • E.M. Lavely, M.H. Ritzwoller, Philos. Trans. R. Soc. Lond. A 339, 431 (1992)

    Article  ADS  Google Scholar 

  • C. Lindsey, D.C. Braun, Helioseismic holography. Astrophys. J. 485, 895–903 (1997)

    Article  ADS  Google Scholar 

  • J. Martínez-Sykora, V. Hansteen, M. Carlsson, Twisted flux tube emergence from the convection zone to the corona. Astrophys. J. 679, 871–888 (2008)

    Article  ADS  Google Scholar 

  • S. Mathis, Transport processes in stellar interiors, in Lecture Notes in Physics, vol. 865, ed. by M. Goupil, K. Belkacem, C. Neiner, F. Lignières, J.J. Green (Springer, Berlin, 2013), p. 23

    Google Scholar 

  • M.S. Miesch, Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1 (2005)

    Article  ADS  Google Scholar 

  • M.S. Miesch, A.S. Brun, M.L. De Rosa, J. Toomre, Structure and evolution of giant cells in global models of solar convection. Astrophys. J. 673, 557–575 (2008). doi:10.1086/523838

    Article  ADS  Google Scholar 

  • M.S. Miesch, N.A. Featherstone, M. Rempel, R. Trampedach, On the amplitude of convective velocities in the deep solar interior. Astrophys. J. 757, 128 (2012)

    Article  ADS  Google Scholar 

  • M.S. Miesch, Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1 (2005). http://www.livingreviews.org/lrsp-2005-1

    Article  ADS  Google Scholar 

  • M.S. Miesch, B.W. Hindman, Gyroscopic pumping in the solar near-surface shear layer. Astrophys. J. 743, 79 (2011), 25 pp.

    Article  ADS  Google Scholar 

  • M.S. Miesch, A.S. Brun, J. Toomre, Solar differential rotation influenced by latitudinal entropy variations in the tachocline. Astrophys. J. 641, 618–625 (2006)

    Article  ADS  Google Scholar 

  • M.S. Miesch, N.A. Featherstone, M. Rempel, R. Trampedach, On the amplitude of convective velocities in the deep solar interior. Astrophys. J. 757, 128 (2012), 14 pp.

    Article  ADS  Google Scholar 

  • R. Moll, R.H. Cameron, M. Schüssler, Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field. Astron. Astrophys. 541, 68 (2012)

    Article  ADS  Google Scholar 

  • M.J.P.F.G. Monteiro, J. Christensen-Dalsgaard, M.J. Thompson, Seismic study of overshoot at the base of the solar convective envelope. Astron. Astrophys. 283, 247–262 (1994)

    ADS  Google Scholar 

  • Å. Nordlund, R.F. Stein, M. Asplund, Solar surface convection. Living Rev. Sol. Phys. 6, 2 (2009)

    Article  ADS  Google Scholar 

  • A. Nordlund, H.C. Spruit, H.-G. Ludwig, R. Trampedach, Is stellar granulation turbulence? Astron. Astrophys. 328, 229–234 (1997)

    ADS  Google Scholar 

  • J. Pietarila Graham, R. Cameron, M. Schüssler, Turbulent small-scale dynamo action in solar surface simulations. Astrophys. J. 714, 1606–1616 (2010)

    Article  ADS  Google Scholar 

  • M.P. Rast, Compressible plume dynamics and stability. J. Fluid Mech. 369, 125–149 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  • M. Rempel, Overshoot at the base of the solar convection zone: a semianalytical approach. Astrophys. J. 607, 1046–1064 (2004). doi:10.1086/383605

    Article  ADS  Google Scholar 

  • M. Rempel, Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622, 1320–1332 (2005a). doi:10.1086/428282

    Article  ADS  Google Scholar 

  • M. Rempel, Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622, 1320–1332 (2005b)

    Article  ADS  Google Scholar 

  • M. Rempel, Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5 (2011a)

    Article  ADS  Google Scholar 

  • M. Rempel, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15 (2011b)

    Article  ADS  Google Scholar 

  • M. Rempel, Numerical sunspot models: robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62 (2012)

    Article  ADS  Google Scholar 

  • M. Rempel, M. Schüssler, M. Knölker, Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640–649 (2009a)

    Article  ADS  Google Scholar 

  • M. Rempel, M. Schüssler, R.H. Cameron, M. Knölker, Penumbral structure and outflows in simulated sunspots. Science 325, 171 (2009b)

    Article  ADS  Google Scholar 

  • F.J. Robinson, K.L. Chan, A large-eddy simulation of turbulent compressible convection: differential rotation in the solar convection zone. Mon. Not. R. Astron. Soc. 321, 723–732 (2001)

    Article  ADS  Google Scholar 

  • T.M. Rogers, G.A. Glatzmaier, Penetrative convection within the anelastic approximation. Astrophys. J. 620, 432–441 (2005). doi:10.1086/423415

    Article  ADS  Google Scholar 

  • M. Roth, M. Stix, Coupling of solar p modes: quasi-degenerate perturbation theory. Astron. Astrophys. 351, 1133–1138 (1999)

    ADS  Google Scholar 

  • M. Roth, M. Stix, Meridional circulation and global solar oscillations. Sol. Phys. 251, 77–89 (2008). doi:10.1007/s11207-008-9232-6

    Article  ADS  Google Scholar 

  • I.W. Roxburgh, S.V. Vorontsov, Seismology of the solar envelope—the base of the convective zone as seen in the phase shift of acoustic waves. Mon. Not. R. Astron. Soc. 268, 880 (1994)

    Article  ADS  Google Scholar 

  • A. Schad, J. Timmer, M. Roth, A unified approach to the helioseismic inversion problem of the solar meridional flow from global oscillations. Astrophys. J. 734, 97 (2011). doi:10.1088/0004-637X/734/2/97

    Article  ADS  Google Scholar 

  • A. Schad, J. Timmer, M. Roth, Measuring the solar meridional flow from perturbations of eigenfunctions of global oscillations. Astron. Nachr. 333, 991 (2012). doi:10.1002/asna.201211815

    Article  ADS  Google Scholar 

  • A. Schad, J. Timmer, M. Roth, Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells. Astrophys. J. Lett. 778, 38 (2013). doi:10.1088/2041-8205/778/2/L38

    Article  ADS  Google Scholar 

  • W. Schaffenberger, S. Wedemeyer-Böhm, O. Steiner, B. Freytag, Holistic mhd-simulation from the convection zone to the chromosphere, in Solar MHD Theory and Observations: A High Spatial Resolution Perspective, ed. by J. Leibacher, R.F. Stein, H. Uitenbroek. Astronomical Society of the Pacific Conference Series, vol. 354 (2006), p. 345

    Google Scholar 

  • P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer, MDI Engineering Team, The solar oscillations investigation—Michelson Doppler Imager. Sol. Phys. 162, 129–188 (1995). doi:10.1007/BF00733429

    Article  ADS  Google Scholar 

  • J. Schou, Migration of zonal flows detected using Michelson Doppler Imager F-mode frequency splittings. Astrophys. J. Lett. 523, 181–184 (1999). doi:10.1086/312279

    Article  ADS  Google Scholar 

  • J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. Di Mauro, W.A. Dziembowski, A. Eff-Darwich, D.O. Gough, D.A. Haber, J.T. Hoeksema, R. Howe, S.G. Korzennik, A.G. Kosovichev, R.M. Larsen, F.P. Pijpers, P.H. Scherrer, T. Sekii, T.D. Tarbell, A.M. Title, M.J. Thompson, J. Toomre, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417 (1998)

    Article  ADS  Google Scholar 

  • J. Schou, P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, M.C. Rabello-Soares, R.S. Bogart, J.T. Hoeksema, Y. Liu, T.L. Duvall, D.J. Akin, B.A. Allard, J.W. Miles, R. Rairden, R.A. Shine, T.D. Tarbell, A.M. Title, C.J. Wolfson, D.F. Elmore, A.A. Norton, S. Tomczyk, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 275, 229–259 (2012). doi:10.1007/s11207-011-9842-2

    Article  ADS  Google Scholar 

  • M. Schüssler, Solar magneto-convection, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. by A.G. Kosovichev, E.M. de Gouveia Dal Pino, Y. Yan. Proc. IAU Symp., vol. 294 (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  • M. Schüssler, A. Vögler, Magnetoconvection in a sunspot umbra. Astrophys. J. 641, 73–76 (2006)

    Article  Google Scholar 

  • S. Shelyag, P. Keys, M. Mathioudakis, F.P. Keenan, Vorticity in the solar photosphere. Astron. Astrophys. 526, 5 (2011)

    Article  ADS  Google Scholar 

  • S. Shelyag, P.S. Cally, A. Reid, M. Mathioudakis, Alfvén waves in simulations of solar photospheric vortices. Astrophys. J. Lett. 776, 4 (2013). doi:10.1088/2041-8205/776/1/L4

    Article  ADS  Google Scholar 

  • D. Skaley, M. Stix, The overshoot layer at the base of the solar convection zone. Astron. Astrophys. 241, 227–232 (1991)

    ADS  Google Scholar 

  • E.A. Spiegel, J.-P. Zahn, The solar tachocline. Astron. Astrophys. 265, 106–114 (1992)

    ADS  Google Scholar 

  • H. Spruit, Convection in stellar envelopes: a changing paradigm. Mem. Soc. Astron. Ital. 68, 397 (1997)

    ADS  Google Scholar 

  • H.C. Spruit, A model of the solar convection zone. Sol. Phys. 34, 277–290 (1974). doi:10.1007/BF00153665

    Article  ADS  Google Scholar 

  • R.F. Stein, Solar surface magneto-convection. Living Rev. Sol. Phys. 9, 4 (2012). http://www.livingreviews.org/lrsp-2012-4

    Article  ADS  Google Scholar 

  • R.F. Stein, Å. Nordlund, Realistic solar convection simulations. Sol. Phys. 192, 91–108 (2000). doi:10.1023/A:1005260918443

    Article  ADS  Google Scholar 

  • R.F. Stein, Å. Nordlund, Solar small-scale magnetoconvection. Astrophys. J. 642, 1246–1255 (2006)

    Article  ADS  Google Scholar 

  • M.J. Thompson, J. Toomre, E.R. Anderson, H.M. Antia, G. Berthomieu, D. Burtonclay, S.M. Chitre, J. Christensen-Dalsgaard, T. Corbard, M. De Rosa, C.R. Genovese, D.O. Gough, D.A. Haber, J.W. Harvey, F. Hill, R. Howe, S.G. Korzennik, A.G. Kosovichev, J.W. Leibacher, F.P. Pijpers, J. Provost, E.J. Rhodes Jr., J. Schou, T. Sekii, P.B. Stark, P.R. Wilson, Differential rotation and dynamics of the solar interior. Science 272, 1300–1305 (1996). doi:10.1126/science.272.5266.1300

    Article  ADS  Google Scholar 

  • R. Trampedach, R.F. Stein, The mass mixing length in convective stellar envelopes. Astrophys. J. 731, 78 (2011)

    Article  ADS  Google Scholar 

  • R.K. Ulrich, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot solar tower telescope at the Mt. Wilson Observatory. Astrophys. J. 725, 658–669 (2010). doi:10.1088/0004-637X/725/1/658

    Article  ADS  Google Scholar 

  • A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005). doi:10.1051/0004-6361:20041507

    Article  ADS  Google Scholar 

  • A. Vögler, Simulating radiative magneto-convection in the solar photosphere, in Reviews in Modern Astronomy 17: The Sun and Planetary Systems—Paradigms for the Universe, ed. by E. Schielicke (Wiley-VCH, Weinheim, 2004), pp. 69–86

    Google Scholar 

  • A. Vögler, M. Schüssler, A solar surface dynamo. Astron. Astrophys. 465, 43–46 (2007)

    Article  Google Scholar 

  • S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002). doi:10.1126/science.1069190

    Article  ADS  Google Scholar 

  • S. Wedemeyer-Böhm, E. Scullion, O. Steiner, L. Rouppe van der Voort, J. de La Cruz Rodriguez, V. Fedun, R. Erdélyi, Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505–508 (2012)

    Article  ADS  Google Scholar 

  • A. Weiss, W. Hillebrandt, H. Thomas, H. Ritter, Cox and Giuli’s Principles of Stellar Structure (Princeton Publishing Associates, Cambridge, 2004)

    Google Scholar 

  • N.O. Weiss, Reflections on magnetoconvection. Geophys. Astrophys. Fluid Dyn. 106, 353–371 (2012)

    Article  ADS  Google Scholar 

  • M.F. Woodard, Theoretical signature of solar meridional flow in global seismic data. Sol. Phys. 197, 11–20 (2000). doi:10.1023/A:1026508211960

    Article  ADS  Google Scholar 

  • M. Woodard, J. Schou, A.C. Birch, T.P. Larson, Global-oscillation eigenfunction measurements of solar meridional flow. Sol. Phys. 287, 129–147 (2013). doi:10.1007/s11207-012-0075-9

    Article  ADS  Google Scholar 

  • A. Zaatri, R. Komm, I. González Hernández, R. Howe, T. Corbard, North South asymmetry of zonal and meridional flows determined from ring diagram analysis of gong ++ data. Sol. Phys. 236, 227–244 (2006). doi:10.1007/s11207-006-0106-5

    Article  ADS  Google Scholar 

  • J.-P. Zahn, Convective penetration in stellar interiors. Astron. Astrophys. 252, 179–188 (1991)

    ADS  Google Scholar 

  • J.-P. Zahn, Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115–132 (1992)

    ADS  Google Scholar 

  • J. Zhao, K. Nagashima, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., Systematic center-to-limb variation in measured helioseismic travel times and its effect on inferences of solar interior meridional flows. Astrophys. J. Lett. 749, 5 (2012). doi:10.1088/2041-8205/749/1/L5

    Article  ADS  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., T. Hartlep, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, 29 (2013). doi:10.1088/2041-8205/774/2/L29

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MSM is supported by NASA grants NNH09AK14I (Heliophysics SR&T) and NNX08AI57G (Heliophysics Theory Program). The National Center for Atmospheric Research is sponsored by the National Science Foundation. MR acknowledges support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 307117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Thompson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanasoge, S., Miesch, M.S., Roth, M. et al. Solar Dynamics, Rotation, Convection and Overshoot. Space Sci Rev 196, 79–99 (2015). https://doi.org/10.1007/s11214-015-0144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0144-0

Keywords

Navigation