Skip to main content
Log in

The Genesis Solar Wind Concentrator: Flight and Post-Flight Conditions and Modeling of Instrumental Fractionation

  • Special Communication
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between −0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, −7.5±0.4 ‰/amu for Mg, −8.9±0.6 ‰/amu for Si, and −22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δm/m.

This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  • J.H. Allton, M.J. Calaway, M.C. Rodriguez, Preliminary quantification of image color gradient on Genesis concentrator silicon carbide target 60001. Lunar Planet. Sci. XXXIX, 1440 (2008)

    ADS  Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)

    Article  ADS  Google Scholar 

  • S.K. Atreya, P.R. Mahaffy, H.B. Niemann, M.H. Wong, T.C. Owen, Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003)

    Article  ADS  Google Scholar 

  • E.A. Baranovsky, V.P. Tarashchuk, Lithium abundances in sunspots. Bull. Crimean Astrophys. Obs. 104, 19–25 (2008). Translated from original Russian text in Izv. Krymskoi Astrofiz. Obs. 104, 31–40

    Article  ADS  Google Scholar 

  • B.L. Barraclough, E.E. Dors, R.A. Abeyta, J.F. Alexander, F.P. Ameduri, J.R. Baldonado, S.J. Bame, P.J. Casey, G. Dirks, D.T. Everett, J.T. Gosling, K.M. Grace, D.R. Guerrero, J.D. Kolar, J.L. Kroesche Jr., W.L. Lockhart, D.J. McComas, D.E. Mietz, J. Roese, J. Sanders, J. Steinberg, R.L. Tokar, C. Urdiales, R.C. Wiens, Genesis electron and ion spectrometers. Space Sci. Rev. 105, 627–660 (2003)

    Article  ADS  Google Scholar 

  • R.H. Becker, Solar wind 15N/14N from Genesis—a tale of two values. Lunar Planet. Sci. XLI, 2469 (2010)

    ADS  Google Scholar 

  • L. Berger, R.F. Wimmer-Schweingruber, G. Gloeckler, Systematic measurements of ion-proton differential streaming in the solar wind. Phys. Rev. Lett. 106, 151103 (2011)

    Article  ADS  Google Scholar 

  • P. Bochsler, Velocity and abundance of silicon ions in the solar wind. J. Geophys. Res. 94, 2365–2373 (1989)

    Article  ADS  Google Scholar 

  • P. Bochsler, Minor ions in the solar wind. Astron. Astrophys. Rev. 14, 1–40 (2007)

    Article  ADS  Google Scholar 

  • P. Bryans, N.R. Badnell, T.W. Gorczyca, J.M. Laming, W. Mitthumsiri, D.W. Savin, Collisional ioniziation equilibrium for optically thin plasmas. I. Updated recombination rate coefficients for bare through sodium-like ions. Astrophys. J. Suppl. Ser. 167, 343–356 (2006)

    Article  ADS  Google Scholar 

  • D.S. Burnett, B.L. Barraclough, R. Bennett, M. Neugebauer, L.P. Oldham, C.N. Sasaki, D. Sevilla, N. Smith, E. Stansbery, D. Sweetnam, R.C. Wiens, The Genesis Discovery mission: return of solar matter to Earth. Space Sci. Rev. 105, 509–534 (2003)

    Article  ADS  Google Scholar 

  • D.S. Burnett, K.M. McNamara, A. Jurewicz, D. Woolum, Molecular contamination on anodized aluminum components of the Genesis science canister. Lunar Planet. Sci. XXXVI, 2405 (2005)

    ADS  Google Scholar 

  • M.J. Calaway, E.K. Stansbery, K.M. McNamara, Modeling ellipsometry measurements of molecular thin-film contamination on Genesis flown array samples. Lunar Planet. Sci. XXXVII, 1420 (2006)

    ADS  Google Scholar 

  • M.J. Calaway, M.C. Rodriguez, E.K. Stansbery, Genesis silicon carbide concentrator target 60003 preliminary ellipsometry mapping results. Lunar Planet. Sci. XXXVIII, 1632 (2007)

    ADS  Google Scholar 

  • M.J. Calaway, M.C. Rodriguez, J.H. Allton, Genesis Concentrator target particle contamination mapping and material identification. Lunar Planet. Sci. XXXIX, 1423 (2008)

    ADS  Google Scholar 

  • R. Chakrabarti, S.B. Jacobsen, The isotopic composition of magnesium in the inner solar system. Earth Planet. Sci. Lett. 293, 349–358 (2010)

    Article  ADS  Google Scholar 

  • R.N. Clayton, Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • R.N. Clayton, Self-shielding in the solar nebula. Nature 415, 860–861 (2002)

    Article  ADS  Google Scholar 

  • R.N. Clayton, T.K. Mayeda, The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984)

    Article  ADS  Google Scholar 

  • R.N. Clayton, N. Onuma, L. Grossman, T.K. Mayeda, Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209–224 (1977)

    Article  ADS  Google Scholar 

  • D.A. Dahl, SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200, 3–25 (2000)

    Article  Google Scholar 

  • S. Epstein, H.P. Taylor Jr., O18/O16, Si30/Si28, C13/C12, and D/H studies of Apollo 14 and 15 samples, in Proc. 3rd Lun. Sci. Conf. (Supplement 3, Geochim. Cosmochim. Cosmochim. Acta) (MIT Press, Cambridge, 1972), pp. 1429–1454

    Google Scholar 

  • S. Epstein, H.P. Taylor Jr., The isotopic composition and concentration of water, hydrogen, and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil, in Proc. 4th Lun. Sci. Conf. (Supplement 4, Geochim. Cosmochim. Acta) (Pergamon, New York, 1973), pp. 1559–1575

    Google Scholar 

  • T. Fouchet, E. Lellouch, B. Bezard, T. Encrenaz, P. Drossart, H. Feuchtgruber, T. de Graauw, ISO-SWS observations of Jupiter: measurement of the ammonia tropospheric profile and of the N-15/N-14 isotopic ratio. Icarus 143, 223–243 (2000)

    Article  ADS  Google Scholar 

  • I.A. Franchi, I.P. Wright, C.T. Pillinger, Heavy nitrogen in Bencubbin—a light-element isotopic anomaly in a stony-iron meteorite. Nature 323, 138–140 (1986). doi:10.1038/323138a0

    Article  ADS  Google Scholar 

  • J. Geiss, F. Bühler, H. Cerutti, P. Eberhardt, C. Filleux, J. Meister, P. Signer, The Apollo SWC experiment: results, conclusions, consequences. Space Sci. Rev. 110, 307–335 (2004)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Geiss, The composition of the solar wind in polar coronal holes. Space Sci. Rev. 130, 139 (2007)

    Article  ADS  Google Scholar 

  • G. Gloeckler, J. Cain, F.M. Ipavich, E.O. Turns, P. Bedini, L.A. Fisk, T.H. Zurbuchen, P. Bochsler, J. Fischer, R.F. Wimmer-Schweingruber, J. Geiss, R. Kallenbach, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497–539 (1998)

    Article  ADS  Google Scholar 

  • V.S. Heber, R.C. Wiens, A.J.G. Jurewicz, H. Baur, N. Vogel, R. Wieler, D.S. Burnett, Isotope fractionation of solar wind implanted into the Genesis Concentrator target determined by neon in the gold cross and implantation experiments. Lunar Planet. Sci. XL, 1485 (2009)

    ADS  Google Scholar 

  • V.S. Heber, R.C. Wiens, A.J.G. Jurewicz, N. Vogel, H. Baur, K. McKeegan, R. Wieler, D.S. Burnett, Genesis Concentrator target: isotopic and elemental fractionation of implanted solar wind characterized and quantified by noble gases. Meteorit. Planet. Sci. (2011). doi:10.1111/j.1945-5100.2011.01170.x

    Google Scholar 

  • V.S. Heber, H. Baur, R. Wieler, P. Bochsler, D.S. Burnett, D.B. Reisenfeld, R.C. Wiens, Fractionation processes in the solar wind detected by Genesis: He, Ne, and Ar isotopic and elemental composition of different solar wind regimes. Astrophys. J. 759, 121 (2012). doi:10.1088/0004-637X/759/2/121

    Article  ADS  Google Scholar 

  • S. Hefti, H. Grunwaldt, F.M. Ipavich, P. Bochsler, D. Hovestadt, M.R. Aellig, M. Hilchenbach, R. Kallenbach, A.B. Galvin, J. Geiss, F. Gliem, G. Gloeckler, B. Klecker, E. Marsch, E. Mobius, M. Neugebauer, P. Wurz, Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS. J. Geophys. Res. 103, 29,697–29,704 (1998)

    Article  ADS  Google Scholar 

  • G.R. Huss, K. Nagashima, D.S. Burnett, A.J.G. Jurewicz, C.T. Olinger, A new upper limit on the D/H ratio in the solar wind. Lunar Planet. Sci. XLIII, 1709 (2012)

    ADS  Google Scholar 

  • A.J.G. Jurewicz, D.S. Burnett, R.C. Wiens, T.A. Friedmann, C.C. Hays, R.J. Hohlfelder, K. Nishiizumi, J.A. Stone, D.S. Woolum, R. Becker, A.L. Butterworth, A.J. Campbell, M. Ebihara, I.A. Franchi, V. Heber, C.M. Hohenberg, M. Humayun, K.D. McKeegan, K. McNamara, A. Meshik, R.O. Pepin, D. Schlutter, R. Wieler, The Genesis solar-wind collector materials. Space Sci. Rev. 105, 535–560 (2003)

    Article  ADS  Google Scholar 

  • R. Kallenbach, F.M. Ipavich, H. Kucharek, P. Bochsler, A.B. Galvin, J. Geiss, F. Gliem, G. Gloeckler, H. Grünwaldt, S. Hefti, M. Hilchenbach, D. Hovestadt, Fractionation of Si, Ne, and Mg isotopes in the solar wind as measured by SOHO/CELIAS/MTOF. Space Sci. Rev. 85, 357–370 (1998)

    Article  ADS  Google Scholar 

  • R. Kallenbach, K. Bamert, M. Hilchenbach, Isotopic composition of the solar wind inferred from in-situ spacecraft measurements. Space Sci. Rev. (2007). doi:10.1007/s11214-007-9216-0

    Google Scholar 

  • A.P.A. Kallio, K.D. McKeegan, G. Jarzebinski, P.H. Mao, T. Kunihiro, C.D. Coath, V.S. Heber, D.S. Burnett, R.C. Wiens, Nitrogen isotopic composition of solar wind returned by the GENESIS mission. Lunar Planet. Sci. XLI, 2481 (2010)

    ADS  Google Scholar 

  • J.F. Kerridge, Long-term compositional variation in solar corpuscular radiation: evidence from nitrogen isotopes in the lunar regolith. Rev. Geophys. 31, 423–437 (1993)

    Article  ADS  Google Scholar 

  • J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104 (2005). doi:10.1029/2004JA010649

    Article  ADS  Google Scholar 

  • H. Kucharek, F.M. Ipavich, R. Kallenbach, P. Bochsler, D. Hovestadt, H. Grünwaldt, M. Hilchenbach, W.I. Axford, H. Balsiger, A. Bürgi, M.A. Coplan, A.B. Galvin, J. Geiss, G. Gloeckler, K.C. Hsieh, B. Klecker, M.A. Lee, S. Livi, G.G. Managadze, E. Marsch, E. Möbius, M. Neugebauer, K.U. Reiche, M. Scholer, M.I. Verigin, B. Wilken, P. Wurz, Magnesium isotope composition in the solar wind as observed with the MTOF sensor on the CELIAS experiment on board the SOHO spacecraft. ESA SP 404, 473–476 (1997)

    ADS  Google Scholar 

  • E. Marsch, K.H. Muhlhauser, H. Rosenbauer, R. Schwenn, F.M. Neubauer, Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 87, 35–51 (1982)

    Article  ADS  Google Scholar 

  • B. Marty, L. Zimmermann, P.G. Burnard, D.S. Burnett, R.C. Wiens, V.S. Heber, R. Wieler, P. Bochsler, Nitrogen isotopes in the recent solar wind from the analysis of Genesis targets: evidence for large-scale isotope heterogeneity in the nascent solar system. Geochim. Cosmochim. Acta 74, 340–355 (2010)

    Article  ADS  Google Scholar 

  • B. Marty, M. Chaussidon, R.C. Wiens, A.J.G. Jurewicz, D.S. Burnett, A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011)

    Article  ADS  Google Scholar 

  • D.J. McComas, B.L. Barraclough, R.W. Moses, D.S. Burnett, R.C. Wiens, M. Neugebauer, Solar wind concentrator, in Measurement Techniques for Space Plasmas, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young. AGU Monograph, vol. 102 (1997), pp. 195–200

    Chapter  Google Scholar 

  • K.D. McKeegan, A.P.A. Kallio, V.S. Heber, G. Jarzebinski, P.H. Mao, C.D. Coath, T. Kunihiro, R.C. Wiens, J.E. Nordholt, R.W. Moses Jr., D.B. Reisenfeld, A.J.G. Jurewicz, D.S. Burnett, The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011)

    Article  ADS  Google Scholar 

  • J.E. Nordholt, R.C. Wiens, R.A. Abeyta, J.R. Baldonado, D.S. Burnett, P. Casey, D.T. Everett, W. Lockhart, D.J. McComas, D.E. Mietz, P. MacNeal, V. Mireles, R.W. Moses Jr., M. Neugebauer, J. Poths, D.B. Reisenfeld, S.A. Storms, C. Urdiales, The Genesis solar wind concentrator. Space Sci. Rev. 105, 561–599 (2003)

    Article  ADS  Google Scholar 

  • T. Owen, P.R. Mahaffy, H.B. Niemann, S. Atreya, M. Wong, Protosolar nitrogen. Astrophys. J. 553, L77–L79 (2001)

    Article  ADS  Google Scholar 

  • V.K. Rai, M.H. Thiemens, Mass independently fractionated sulfur components in chondrites. Geochim. Cosmochim. Acta 71, 1341–1354 (2007)

    Article  ADS  Google Scholar 

  • D.B. Reisenfeld, R.C. Wiens, J.T. Steinberg, J. Raines, T. Zurbuchen, B.L. Barraclough, Solar wind conditions and composition during the Genesis mission as measured by in situ spacecraft. Space Sci. Rev. (2012). doi:10.1007/s11214-013-9960-2

    Google Scholar 

  • S. Ritzenhoff, E.H. Schröter, W. Schmidt, The lithium abundance in sunspots. Astron. Astrophys. 328, 695–701 (1997)

    ADS  Google Scholar 

  • M.C. Rodriguez, M.C. Calaway, J.H. Allton, K.M. McNamara, J.D. Hittle, Status of reconstruction of fragmented diamond-on-silicon collector from Genesis spacecraft solar wind concentrator. Lunar Planet. Sci. XL, 1337 (2009)

    ADS  Google Scholar 

  • S. Schläppi, K. Altwegg, H. Balsiger, M. Hässig, A. Jäckel, P. Wurz, B. Fiethe, M. Rubin, S.A. Fuselier, J.J. Berthelier, J. De Keyser, H. Rème, U. Mall, Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. 115, A12313 (2010). doi:10.1029/2010JA015734

    Article  ADS  Google Scholar 

  • J. Schmid, P. Bochsler, J. Geiss, Velocity of iron ions in the solar wind. J. Geophys. Res. 92, 9901–9906 (1987)

    Article  ADS  Google Scholar 

  • R.M. Skoug, J.T. Gosling, J.T. Steinberg, D.J. McComas, C.W. Smith, N.F. Ness, Q. Hu, L.F. Burlaga, Extremely high speed solar wind. J. Geophys. Res. 109, A09102 (2004). doi:10.1029/2004JA010494

    Article  ADS  Google Scholar 

  • M. Stix, The Sun, 2nd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

  • M.H. Thiemens, J.E. Heidenreich III, The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219, 1073–1075 (1983)

    Article  ADS  Google Scholar 

  • R. Wieler, F. Humbert, B. Marty, Evidence for a predominantly non-solar origin of nitrogen in the lunar regolith revealed by single grain analyses. Earth Planet. Sci. Lett. 167, 47–60 (1999)

    Article  ADS  Google Scholar 

  • R.C. Wiens, G.R. Huss, D.S. Burnett, The solar oxygen isotopic composition: predictions and implications for solar nebula processes. Meteorit. Planet. Sci. 34, 99–108 (1999)

    Article  ADS  Google Scholar 

  • R.C. Wiens, M. Neugebauer, D.B. Reisenfeld, R.W. Moses Jr., J.E. Nordholt, Genesis solar wind concentrator: computer simulations of performance under solar wind conditions. Space Sci. Rev. 105, 601–626 (2003)

    Article  ADS  Google Scholar 

  • R.C. Wiens, P. Bochsler, D.S. Burnett, R.F. Wimmer-Schweingruber, Solar and solar-wind isotopic compositions. Earth Planet. Sci. Lett. 222, 697–712 (2004)

    Article  ADS  Google Scholar 

  • R.G. Wilson, SIMS quantification in Si, GaAs, and diamond—an update. Int. J. Mass Spectrom. Ion Process. 143, 43–49 (1995)

    Article  ADS  Google Scholar 

  • P. Wurz, Heavy ions in the solar wind: results from SOHO/CELIAS/MTOF. Habilitation thesis, University of Bern, Switzerland, 2001

  • E.D. Young, S.S. Russell, Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452–455 (1998)

    Article  ADS  Google Scholar 

  • E.D. Young, A. Galy, H. Nagahara, Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095–1104 (2002)

    Article  ADS  Google Scholar 

  • J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors at LANL are grateful for a grant from NASA’s Laboratory Analysis of Returned Samples (LARS) program, as well as Discovery Program office funding to the Genesis mission. The authors are also grateful to all who made possible the Concentrator experiment, including the Genesis flight. We thank the ACE SWICS instrument team and the ACE Science Center for providing the ACE data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Wiens.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 38 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiens, R.C., Reisenfeld, D.B., Olinger, C. et al. The Genesis Solar Wind Concentrator: Flight and Post-Flight Conditions and Modeling of Instrumental Fractionation. Space Sci Rev 175, 93–124 (2013). https://doi.org/10.1007/s11214-013-9961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-9961-1

Keywords

Navigation