Skip to main content
Log in

Scalings, Cascade and Intermittency in Solar Wind Turbulence

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Investigating in situ fluctuations in the interplanetary space, offers us a unique challenge to study scaling properties in a turbulent medium which cover a wide range of scales. This includes not only the inertial range, where turbulence can be described within a fluid-like approach, but also the high-frequency region, where a kinetic approach is required and turbulence strongly departs from a universal behavior. The dissipationless character of the solar wind plasma represents a further complexity in the usual complex nature of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • R.H. Abrams, E.J. Yadlovsky, H. Lashinsky, Periodic pulling and turbulence in a bounded plasma. Phys. Rev. Lett. 22, 275–278 (1969)

    Article  ADS  Google Scholar 

  • O. Alexandrova, V. Carbone, P. Veltri, L. Sorriso-Valvo, Small-scale energy cascade of the solar wind turbulence. Astrophys. J. 674, 1153–1157 (2008)

    Article  ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003 (2009)

    Article  ADS  Google Scholar 

  • J.A. Araneda, E. Marsch, A.F. Viñas, Proton core heating and beam formation via parametrically unstable Alfvén-Cyclotron waves. Phys. Rev. Lett. 100, 125003 (2008)

    Article  ADS  Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002 (2005)

    Article  ADS  Google Scholar 

  • S.D. Bale et al., The electric antennas for the STEREO/WAVES experiment. Space Sci. Rev. 136, 529–547 (2008)

    Article  ADS  Google Scholar 

  • J.W. Belcher, L. Davis Jr., Large-amplitude Alfvén waves in the interplanetary medium. Astrophys. J. 76, 3534–3563 (1971)

    Google Scholar 

  • R. Benzi, G. Paladin, A. Vulpiani, G. Parisi, On the multifractal nature of fully developed turbulence and chaotic systems. J. Phys. A 17, 3521–3531 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  • D. Biskamp, E. Schwarz, J.F. Drake, Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 1264–1267 (1996)

    Article  ADS  Google Scholar 

  • D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  • J.L. Bougeret et al., S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487–528 (2008)

    Article  ADS  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4–198 (2005)

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, S. Chapman, B. Hnat, A. Noullez, L. Sorriso-Valvo, Intermittent character of interplanetary magnetic field fluctuations. Phys. Plasmas 14, 032901 (2007)

    Article  ADS  Google Scholar 

  • V. Carbone, Cascade model for intermittency in fully developed magnetohydrodynamic turbulence. Phys. Rev. Lett. 71, 1546–1548 (1993)

    Article  ADS  Google Scholar 

  • V. Carbone, F. Malara, P. Veltri, A model for the three-dimensional magnetic field correlation spectra of low-frequency solar wind fluctuations during Alfvénic periods. J. Geophys. Res. 100, 1763–1778 (1995a)

    Article  ADS  Google Scholar 

  • V. Carbone, P. Veltri, R. Bruno, Experimental evidence for differences in the extended self-similarity scaling laws between fluid and magnetohydrodynamic turbulent flows. Phys. Rev. Lett. 75, 3110–3113 (1995b)

    Article  ADS  Google Scholar 

  • V. Carbone, L. Sorriso-Valvo, R. Marino, On the turbulent energy cascade in anisotropic magnetohydrodynamic turbulence. Europhys. Lett. 88, 25001 (2009a)

    Article  ADS  Google Scholar 

  • V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys. Rev. Lett. 103, 061102 (2009b)

    Article  ADS  Google Scholar 

  • V. Carbone, S. Perri, E. Yordanova, P. Veltri, R. Bruno, Y.V. Khotyaintsev, M. André, Sign-singularity of the reduced magnetic helicity in the solar wind plasma. Phys. Rev. Lett. 104, 181101 (2010)

    Article  ADS  Google Scholar 

  • P.J. Coleman, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371–380 (1968)

    Article  ADS  Google Scholar 

  • M. Dobrowolny, A. Mangeney, P. Veltri, Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144–147 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  • C.P. Escoubet, M. Fehringer, M. Goldstein, Introduction the cluster mission. Ann. Geophys. 19, 1197–1200 (2001)

    Article  ADS  Google Scholar 

  • J.W. Freeman, Estimates of solar wind heating inside 0.3 AU. Geophys. Res. Lett. 15, 88–91 (1988)

    Article  ADS  Google Scholar 

  • U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  • S.P. Gary, J.E. Borovsky, Alfvén-cyclotron fluctuations: linear Vlasov theory. J. Geophys. Res. 109, A06105 (2004). doi:10.1029/2004JA010399

    ADS  Google Scholar 

  • S.P. Gary, S. Saito, H. Li, Cascade of whistler turbulence: particle-in-cell simulations. Geophys. Res. Lett. 35, L02104 (2008)

    Article  ADS  Google Scholar 

  • S.P. Gary, C.W. Smith, Short-wavelength turbulence in the solar wind: linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. 114, A12105 (2009). doi:10.1029/2009JA014525

    Article  ADS  Google Scholar 

  • P.R. Gazis, A. Barnes, J.D. Mihalov, A.J. Lazarus, Solar wind velocity and temperature in the outer heliosphere. J. Geophys. Res. 99, 6561–6573 (1994)

    Article  ADS  Google Scholar 

  • S. Ghosh, E. Siregar, D.A. Roberts, M.L. Goldstein, Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics. J. Geophys. Res. 101, 2493–2504 (1996)

    Article  ADS  Google Scholar 

  • K.-H. Glassmeier, U. Motschmann, M. Dunlop, A. Balogh, M.H. Acuña, C. Carr, G. Musmann, K.-H. Fornaçon, K. Schweda, J. Vogt, E. Georgescu, S. Buchert, Cluster as a wave telescope—first results from the fluxgate magnetometer. Ann. Geophys. 19, 1439–1447 (2001)

    Article  ADS  Google Scholar 

  • M.L. Goldstein, D.A. Roberts, C.A. Fitch, Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519–11538 (1994)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, R.R. Anderson, Plasma wave electric fields in the solar wind—initial results from HELIOS 1. J. Geophys. Res. 82, 632–650 (1977)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, L.A. Frank, Ion acoustic waves in the solar wind. J. Geophys. Res. 83, 58–74 (1978)

    Article  ADS  Google Scholar 

  • G.G. Howes, W. Dorland, S.C. Cowley, G.W. Hammett, E. Quataert, A.A. Schekochihin, T. Tatsuno, Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100, 065004 (2008a)

    Article  ADS  Google Scholar 

  • G.G. Howes, Inertial range turbulence in kinetic plasmas. Phys. Plasmas 15, 055904 (2008b)

    Article  ADS  Google Scholar 

  • H.K. Kiyani, S.C. Chapman, Y.V. Khotyaintsev, M.W. Dunlop, F. Sahraoui, Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103, 075006 (2009)

    Article  ADS  Google Scholar 

  • M. Kobayashi, M. Tsubota, Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation. Phys. Rev. Lett. 94, 065302 (2005)

    Article  ADS  Google Scholar 

  • G. Kowal, A. Lazarian, Scaling relations of compressible MHD turbulence. Astrophys. J. Lett. 666, L69–L72 (2007)

    Article  ADS  Google Scholar 

  • P.A. Isenberg, Turbulence-driven solar wind heating and energization of pickup protons in the outer heliosphere. Astrophys. J. 623, 502–510 (2005)

    Article  ADS  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775–4787 (1998)

    Article  ADS  Google Scholar 

  • E. Lee, M.E. Brachet, A. Pouquet, P.D. Mininni, D. Rosenberg, Lack of universality in decaying magnetohydrodynamic turbulence. Phys. Rev. E 81, 016318 (2010)

    Article  ADS  Google Scholar 

  • M.J. Lighthill, The effect of compressibility on turbulence, in IAU Symposium: Gas Dynamics of Cosmic Clouds, vol. 2 (1955), pp. 121–123

    Google Scholar 

  • B.T. MacBride, C.W. Smith, M.A. Forman, The turbulent cascade at 1 AU: energy transfer and the third-order scaling for MHD. Astrophys. J. 679, 1644–1660 (2008)

    Article  ADS  Google Scholar 

  • B.T. MacBride, C.W. Smith, B.J. Vasquez, Inertial-range anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations. J. Geophys. Res. 115, 7105 (2010). doi:10.1029/2009JA014939

    Article  Google Scholar 

  • M.-M. MacLow, R.S. Klessen, Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004)

    Article  ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone, A. Noullez, R. Bruno, B. Bavassano, Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. Astrophys. J. Lett. 677, L71–L74 (2008)

    Article  ADS  Google Scholar 

  • E. Marsch, R. Schwenn, H. Rosenbauer, K.-H. Muehlhaeuser, W. Pilipp, F.M. Neubauer, J. Geophys. Res. 87, 52–72 (1982)

    Article  ADS  Google Scholar 

  • E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006)

    ADS  Google Scholar 

  • L. Matteini, S. Landi, M. Velli, P. Hellinger, Kinetics of parametric instabilities of Alfvén waves: evolution of ion distribution functions. J. Geophys. Res. 115, A09106 (2010). doi:10.1029/2009JA014987

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673–20683 (1990)

    Article  ADS  Google Scholar 

  • C. Meneveau, K.R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424–1427 (1987)

    Article  ADS  Google Scholar 

  • D. Montgomery, M.R. Brown, W.H. Matthaeus, Density fluctuation spectra in magnetohydrodynamic turbulence. J. Geophys. Res. 92, 282–284 (1987)

    Article  ADS  Google Scholar 

  • Y. Narita, K.-H. Glassmeier, F. Sahraoui, M.L. Goldstein, Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104, 171101 (2010)

    Article  ADS  Google Scholar 

  • Y. Narita, S.P. Gary, S. Saito, K.-H. Glassmeier, U. Motschmann, Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, L05101 (2011). doi:10.1029/2010GL046588

    Article  ADS  Google Scholar 

  • P. Padoan, Å. Nordlund, A.G. Kritsuk, M.L. Norman, P.S. Li, Two regimes of turbulent fragmentation and the stellar initial mass function from primordial to present-day star formation. Astrophys. J. 661, 972–981 (2007)

    Article  ADS  Google Scholar 

  • E.N. Parker, Theory of solar wind, in Proceedings of the International Conference on Cosmic Rays, Vol. 1: Solar Particles and Sun-Earth Relations (1963)

    Google Scholar 

  • S. Perri, E. Yordanova, V. Carbone, P. Veltri, L. Sorriso-Valvo, R. Bruno, M. André, Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. 114, 2102 (2009). doi:10.1029/2008JA013491

    Article  Google Scholar 

  • S. Perri, V. Carbone, E. Yordanova, R. Bruno, A. Balogh, Scaling law of the reduced magnetic helicity in fast streams. Planet. Space Sci. 59, 575–579 (2011)

    Article  ADS  Google Scholar 

  • H. Politano, A. Pouquet, Model of intermittency in magnetohydrodynamic turbulence. Phys. Rev. E 52, 636–641 (1995)

    Article  ADS  Google Scholar 

  • H. Politano, A. Pouquet, Von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57, 21–24 (1998)

    Article  ADS  Google Scholar 

  • J.D. Richardson, K.I. Paularena, A.J. Lazarus, J.W. Belcher, Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys. Res. Lett. 22, 325–328 (1995)

    Article  ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 23, 231102 (2009)

    Article  ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010)

    Article  ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009)

    Article  ADS  Google Scholar 

  • S. Servidio, W.H. Matthaeus, V. Carbone, Statistical properties of ideal three-dimensional Hall magnetohydrodynamics: the spectral structure of the equilibrium ensemble. Phys. Plasmas 15, 042314 (2008)

    Article  ADS  Google Scholar 

  • Z.-S. She, E. Leveque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)

    Article  ADS  Google Scholar 

  • L. Skrbek, K.R. Sreenivasan, Developed quantum turbulence and its decay. Phys. Fluids 24, 011301 (2012). doi:10.1063/1.3678335

    Article  ADS  Google Scholar 

  • C.W. Smith, M.L. Goldstein, W.H. Matthaeus, Turbulence analysis of the Jovian upstream ‘wave’ phenomenon. J. Geophys. Res. 88, 5581–5593 (1983)

    Article  ADS  Google Scholar 

  • C.W. Smith, D.J. Mullan, N.F. Ness, R.M. Skoug, J. Steinberg, Day the solar wind almost disappeared: magnetic field fluctuations, wave refraction and dissipation. J. Geophys. Res. 106, 18625–18634 (2001a)

    Article  ADS  Google Scholar 

  • C.W. Smith, W.H. Matthaeus, G.P. Zank, N.F. Ness, S. Oughton, J.D. Richardson, Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations. J. Geophys. Res. 106, 8253–8272 (2001b)

    Article  ADS  Google Scholar 

  • C.W. Smith, K. Hamilton, B.J. Vasquez, R.J. Leamon, Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. Lett. 645, L85–L88 (2006)

    Article  ADS  Google Scholar 

  • C.W. Smith, J.E. Stawarz, B.J. Vasquez, M.A. Forman, B.T. MacBride, Turbulent cascade at 1 AU in high cross-helicity flows. Phys. Rev. Lett. 103, 201101 (2009)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 1801–1804 (1999)

    Article  ADS  Google Scholar 

  • L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, E. Pietropaolo, Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007)

    Article  ADS  Google Scholar 

  • O. Stawicki, S.P. Gary, H. Li, Solar wind magnetic fluctuation spectra: dispersion versus damping. J. Geophys. Res. 106, 8273–8282 (2001)

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, On the nature of compressive fluctuations in the solar wind. J. Geophys. Res. 99, 21481–21492 (1994)

    Article  ADS  Google Scholar 

  • C.-Y. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories. Space Sci. Rev. 76, 1–210 (1995)

    Article  ADS  Google Scholar 

  • F. Valentini, P. Veltri, F. Califano, A. Mangeney, Cross-scale effects in solar-wind turbulence. Phys. Rev. Lett. 101, 025006 (2008)

    Article  ADS  Google Scholar 

  • F. Valentini, P. Veltri, Electrostatic short-scale termination of solar-wind turbulence. Phys. Rev. Lett. 102, 225001 (2009)

    Article  ADS  Google Scholar 

  • B.J. Vasquez, C.W. Smith, K. Hamilton, B.T. MacBride, R.J. Leamon, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res., Atmos. 11, 112 (2007). doi:10.1029/2007JA012305

    Google Scholar 

  • E. Yordanova, A. Vaivads, M. André, S.C. Buchert, Z. Vörös, Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 100, 205003 (2008)

    Article  ADS  Google Scholar 

  • X. Wang, J. He, C. Tu, E. Marsch, L. Zheng, J.-K. Chao, Large-amplitude Alfven wave in interplanetary space: the WIND spacecraft observations. Astrophys. J. 147, 746 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Carbone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, V. Scalings, Cascade and Intermittency in Solar Wind Turbulence. Space Sci Rev 172, 343–360 (2012). https://doi.org/10.1007/s11214-012-9907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9907-z

Keywords

Navigation