Skip to main content
Log in

The Role of Magnetic Reconnection in CME Acceleration

  • Session I: Plasma Flows, Shocks and Turbulence
  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari, T., Luciani, J. F., Mikić, Z., and Linker, J.: 2000, Astrophys. J. 529, L49–52.

    Article  ADS  Google Scholar 

  • Andrews, M. D., and Howard, R. A.: 2001, Space Sci. Rev. 95, 147–163.

    Article  ADS  Google Scholar 

  • Antiochos, S. K., DeVore, C. R., and Klimchuk, J. A.: 1999, Astrophys. J. 510, 485–493.

    Article  ADS  Google Scholar 

  • Guo, W. P., Wu, S. T., and Tandberg-Hanssen, E.: 1996, Astrophys. J. 469, 944–953.

    Article  ADS  Google Scholar 

  • Low, B. C., and Zhang, M.: 2002, Astrophys. J. 564, L53–56.

    Article  ADS  Google Scholar 

  • MacNeice, P., Antiochos, S. K., Phillips, A. Spicer, D. S., Devore, C. R., and Olson, K.: 2004, Astrophys. J. 614, 1028–1041.

    Article  ADS  Google Scholar 

  • MacQueen, R. M., and Fisher, R. R.: 1983, Solar Phys. 89, 89–102.

    Article  ADS  Google Scholar 

  • Manchester, W. B., Gombosi, T. I., Roussev, I., Ridley, A., De Zeeuw, D. L., Sokolov, I. V., Powell, K. G., and Toth, G.: 2004, J. Geophys. Res. 109, A02107.

    Article  Google Scholar 

  • Mikić, Z., and Linker, J. A.: 1994, Astrophys. J. 430, 898.

    Article  ADS  Google Scholar 

  • Plunkett, S. P., Vourlidas, A. Simberova, S., Karlicky, M., Kotrc, P. Heinzel, P., et al.: 2000, Solar Phys. 194, 371–391.

    Article  ADS  Google Scholar 

  • Sheeley, N. R., Walters, J. H., Wang, Y. -M., and Howard, R. A.: 1999, J. Geophys. Res. 104, 24739–24768.

    Article  ADS  Google Scholar 

  • Shibata, K., Nozawa, S., and Matsumoto, R.: 1992, Publ. Astron. Soc., Jpn. 44, 265–272.

    ADS  Google Scholar 

  • St. Cyr, O. C., Burkepile, J. T., Hundhausen, A. J., and Lecinski, A. R., 1999, J. Geophys. Res. 104, 12493–12506.

    Article  ADS  Google Scholar 

  • St. Cyr, O. C., Howard, R. A., Sheeley, N. R., Plunkett, S. P., Michels, D. J., Paswaters, S. E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., and Larny, P. I.: 2000, J. Geophys. Res. 105, 18169–18186.

    Article  ADS  Google Scholar 

  • Tandberg-Hanssen, E.: 1995, The Nature of Solar Prominence, Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • van der Holst, B., Poets, S., Chane, E., Dubey, G., Jacobs, C., and Kimpe, D.: 2005, Space Sci. Rev. 121, 91–104.

    Google Scholar 

  • Wang, H. M., Spirock, T.J., Qiu, J., Ji, H. S., Yurchyshyn, V., Moon, Y. -J., et al.: 2002, Astrophys. J. 576, 497.

    Article  ADS  Google Scholar 

  • Wu, S. T., and Guo, Q. P.: 1997, Adv. Space Res. 20, 2313–2318.

    Article  ADS  Google Scholar 

  • Wu, S. T., and Wang, J. F.: 1987, Comp. Method Appl. Mech. Eng. 64, 267–282.

    Article  MATH  Google Scholar 

  • Wu, S. T., Song, M. T., Cheng, C. C., and Dryer, M.: 1994, Space Sci. Rev. 70, 167–170.

    Article  ADS  Google Scholar 

  • Wu, S. T., Guo, W. P., and Wang, J. F.: 1995, Solar Phys. 157, 325–348.

    Article  ADS  Google Scholar 

  • Wu, S. T., Xiao, Y. C., Musielak, Z. E., and Suess, S. T.: 1996, Solar Phys. 163, 291–307.

    Article  ADS  Google Scholar 

  • Wu, S. T., Guo, W. P., and Dryer, M.: 1997a, Solar Phys. 170, 265–282.

    Article  ADS  Google Scholar 

  • Wu, S. T., Guo, W. P., Andrews, M. D., Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout, M. V., Schwenn, R., Simnett, G. M., Bedford, D. K., and Eyles, C. J.: 1997b, Solar Phys. 175, 719–735.

    Article  ADS  Google Scholar 

  • Wu, S.T., Guo, W. P., Michels, D. J., and Burlaga, L. F.: 1999, J. Geophys. Res. 104, A7, 14,789–14,802.

    Google Scholar 

  • Wu, S. T., Guo, W. P., Plunkett, S. P. Schmieder, B., and Simnett, G. M.: 2000, J. Atmos. Solar-Terr. Phys. 62, 1489–1498.

    Article  ADS  Google Scholar 

  • Wu, S. T., Zhang, T. X., Tandberg-Hanssen, E., Liu, Y., Feng, X. S., and Tan, A.: 2004, Solar Phys. 225, 157–175.

    Article  ADS  Google Scholar 

  • Zhang, M., and Low, B. C.: 2004, Astrophys. J. 600, 1043–1052.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K. P., Howard, R. A., and Vourlides, A.: 2004, Astrophys. J. 604, 402.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S.T., Zhang, T.X., Dryer, M. et al. The Role of Magnetic Reconnection in CME Acceleration. Space Sci Rev 121, 33–47 (2005). https://doi.org/10.1007/s11214-006-6159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-6159-9

Keywords

Navigation