Skip to main content
Log in

Comparison of I-ICME and M-ICME Fittings and In Situ Observation Parameters for Solar Cycles 23 and 24 and Their Influence on Geoeffectiveness

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

To understand the weaker geomagnetic activity in Solar Cycle 24, we present comparisons of interplanetary coronal mass ejections (ICMEs) fittings and in situ observation parameters in Solar Cycles 23 and 24. According to their in situ features, ICMEs are separated into two categories: isolated ICMEs (I-ICMEs) and multiple ICMEs (M-ICMEs). The number of I-ICMEs in Solar Cycles 23 and 24 does not show a strong difference, while the number of M-ICMEs, which have a high probability of causing intense geomagnetic storms, declines proportionally to the sunspot number in Solar Cycle 24. Despite no obvious variation in their distribution, the geoeffective ICMEs in Solar Cycle 23 have a larger average total magnetic field strength and a larger southern magnetic field than those of Solar Cycle 24. Since the average solar wind velocities of the two solar cycles differ, the geoeffective ICMEs in Solar Cycle 23 have a higher velocity and distinct speed distributions from those in Solar Cycle 24. The total magnetic flux and radius of I-ICMEs in Solar Cycle 23 are larger than those in Solar Cycle 24, while the axial magnetic field intensity is basically the same. We propose that geomagnetic activity in Solar Cycle 24 is lower than that of Solar Cycle 23, due to the smaller M-ICME number, the slower ICME speed, and absence of ICME events with significant southward magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability

The list of interplanetary coronal mass ejections in Solar Cycles 23 and 24 can be obtained from the website http://space.ustc.edu.cn/dreams/wind_icmes/index.php, interplanetary magnetic field and solar wind data are available from Wind and the Advanced Composition Explorer (ACE) satellites (https://cdaweb.gsfc.nasa.gov/istp_public/). The sunspot number data of version 2.0 can be downloaded from World Data Center-Sunspot Index and Long-term Solar Observations (WDC-SILSO), Royal Observatory of Belgium, Brussels (https://wwwbis.sidc.be/silso/datafiles). The simulation of the velocity-modified cylindrically symmetric force-free flux rope model can be obtained from http://space.ustc.edu.cn/dreams/mc_fitting/.

References

  • Aulanier, G.: 2010, What triggers coronal mass ejections? In: 38th COSPAR Scientific Assembly 38, 2. ADS.

    Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., Zurbuchen, T.: 2003, Merged interaction regions at 1 AU. J. Geophys. Res. 108, 1425. DOI. ADS.

    Article  Google Scholar 

  • Case, A.W., Spence, H.E., Owens, M.J., Riley, P., Odstrcil, D.: 2008, Ambient solar wind’s effect on ICME transit times. Geophys. Res. Lett. 35, L15105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chi, Y., Shen, C., Wang, Y., Xu, M., Ye, P., Wang, S.: 2016, Statistical study of the interplanetary coronal mass ejections from 1995 to 2015. Solar Phys. 291, 2419. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chi, Y., Zhang, J., Shen, C., Hess, P., Liu, L., Mishra, W., Wang, Y.: 2018, Observational study of an Earth-affecting problematic ICME from STEREO. Astrophys. J. 863, 108. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chi, Y., Scott, C., Shen, C., Barnard, L., Owens, M., Xu, M., Zhang, J., Jones, S., Zhong, Z., Yu, B., Lang, M., Wang, Y., Lockwood, M.: 2021, Modeling the observed distortion of multiple (Ghost) CME fronts in STEREO heliospheric imagers. Astrophys. J. Lett. 917, L16. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cid, C., Hidalgo, M.A., Nieves-Chinchilla, T., Sequeiros, J., Viñas, A.F.: 2002, Plasma and magnetic field inside magnetic clouds: a global study. Solar Phys. 207, 187. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A.N., Rodriguez, L., Aran, A., Menvielle, M., Poedts, S.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. 114, A02109. DOI. ADS.

    Article  ADS  Google Scholar 

  • Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Interplanetary origins of moderate (\(-100\text{ nT} < \mathrm{Dst} \leq -50\) nT) geomagnetic storms during solar cycle 23 (1996-2008). J. Geophys. Res. 118, 385. DOI. ADS.

    Article  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(\mathrm{Dst}\leq-100\) nT) during solar cycle 23 (1996-2006). J. Geophys. Res. 113, A05221. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fadaaq, M., Badruddin, B.: 2021, Study of transient modulation of galactic cosmic rays due to interplanetary manifestations of coronal mass ejections: 2010–2017. Astrophys. Space Sci. 366, 10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: NASA Conf. Pub. 228, 731. ADS.

    Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.T.: 2007, Interplanetary origin of intense geomagnetic storms (\(\mathrm{Dst}< -100\) nT) during solar cycle 23. Geophys. Res. Lett. 34, L06101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Tsurutani, B.T., Clúa de Gonzalez, A.L., Dal Lago, A.: 2011, Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Sci. Rev. 158, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2008, Solar connections of geoeffective magnetic structures. J. Atmos. Solar-Terr. Phys. 70, 2078. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Short-term variability of the Sun-Earth system: an overview of progress made during the CAWSES-II period. Prog. Earth Planet. Sci. 2, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Mäkelä, P.: 2010, Coronal mass ejections from sunspot and non-sunspot regions. In: Magnetic Coupling Between the Interior and Atmosphere of the Sun, Astrophys. Space Sci. Proc. 19, 289. DOI. ADS.

    Chapter  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Makela, P., Michalek, G.: 2015b, The Mild Space Weather in Solar Cycle 24. ArXiv e-prints, arXiv. DOI. ADS.

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015a, Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res. 120, 9221. DOI. ADS.

    Article  Google Scholar 

  • Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L.: 2012, Expansion of magnetic clouds in the outer heliosphere. Astron. Astrophys. 543, A107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hajra, R., Marques de Souza Franco, A., Echer, E., José Alves Bolzan, M.: 2021, Long term variations of the geomagnetic activity: a comparison between the strong and weak solar activity cycles and implications for the space climate. J. Geophys. Res. 126, e28695. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T.: 2012, A global magnetic topology model for magnetic clouds. I. Astrophys. J. 748, 109. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29, 1637. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Cid, C., Vinas, A.F., Sequeiros, J.: 2002, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 107, 1002. DOI. ADS.

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. 107, 1142. DOI. ADS.

    Article  Google Scholar 

  • Janvier, M., Démoulin, P., Dasso, S.: 2013, Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astron. Astrophys. 556, A50. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kumar, A., Rust, D.M.: 1996, Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 15667. DOI. ADS.

    Article  ADS  Google Scholar 

  • Larson, D.E., Lin, R.P., McTiernan, J.M., McFadden, J.P., Ergun, R.E., McCarthy, M., Rème, H., Sanderson, T.R., Kaiser, M., Lepping, R.P., Mazur, J.: 1997, Tracing the topology of the October 18-20, 1995, magnetic cloud with ∼0.1-10² keV electrons. Geophys. Res. Lett. 24, 1911. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2005, Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties. Ann. Geophys. 23, 2687. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Manchester, I.W.B., Gombosi, T.I.: 2005, Numerical simulation of the interaction of two coronal mass ejections from sun to Earth. Astrophys. J. 634, 651. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: a review. Solar Phys. 292, 64. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res. 6, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., Davila, J., de Koning, C.A., Gallagher, P.T., Gissot, S., Howard, R.A., Howard, T.A., Kramar, M., Lamy, P., Liewer, P.C., Maloney, S., Marqué, C., McAteer, R.T.J., Moran, T., Rodriguez, L., Srivastava, N., St. Cyr, O.C., Stenborg, G., Temmer, M., Thernisien, A., Vourlidas, A., West, M.J., Wood, B.E., Zhukov, A.N.: 2010, On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys. 28, 203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106, 10581. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mustajab, F., Badruddin: 2011, Geoeffectiveness of the interplanetary manifestations of coronal mass ejections and solar-wind stream-stream interactions. Astrophys. Space Sci. 331, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Owens, M.J., Lockwood, M., Barnard, L.A.: 2020, The value of CME arrival time forecasts for space weather mitigation. Space Weather 18, e02507. DOI. ADS.

    Article  Google Scholar 

  • Plunkett, S.P., Thompson, B.J., St. Cyr, O.C., Howard, R.A.: 2001, Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 63, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Qiu, S., Zhang, Z., Yousof, H., Soon, W., Jia, M., Tang, W., Dou, X.: 2022, The interplanetary origins of geomagnetic storm with Dst\(_{min}\) ≤ – 50 nT during solar cycle 24 (2009-2019). Adv. Space Res. 70, 2047. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rawat, R., Echer, E., Gonzalez, W.D.: 2018, How different are the solar wind-interplanetary conditions and the consequent geomagnetic activity during the ascending and early descending phases of the solar cycles 23 and 24? J. Geophys. Res. 123, 6621. DOI. ADS.

    Article  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2012, Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Clim. 2, A01. DOI. ADS.

    Article  Google Scholar 

  • Romashets, E.P., Vandas, M.: 2003, Force-free field inside a toroidal magnetic cloud. Geophys. Res. Lett. 30, 2065. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Russell, C.T., Shinde, A.A., Jian, L.: 2005, A new parameter to define interplanetary coronal mass ejections. Adv. Space Res. 35, 2178. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Pan, Z., Miao, B., Ye, P., Wang, S.: 2014, Full-halo coronal mass ejections: arrival at the Earth. J. Geophys. Res. 119, 5107. DOI. ADS.

    Article  Google Scholar 

  • Shen, C., Chi, Y., Wang, Y., Xu, M., Wang, S.: 2017, Statistical comparison of the ICME’s geoeffectiveness of different types and different solar phases from 1995 to 2014. J. Geophys. Res. 122, 5931. DOI. ADS.

    Article  Google Scholar 

  • Shen, C., Xu, M., Wang, Y., Chi, Y., Luo, B.: 2018, Why the shock-ICME complex structure is important: learning from the early 2017 September CMEs. Astrophys. J. 861, 28. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Chi, Y., Xu, M., Wang, Y.: 2021, Origination of extremely intense south component of magnetic field (B_s) in the ICME. Frontiers Phys. 9, 673. DOI. ADS.

    Article  ADS  Google Scholar 

  • Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: a generalization of the lundquist solution. Astron. Astrophys. 398, 801. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vourlidas, A.: 2014, The flux rope nature of coronal mass ejections. Plasma Phys. Control. Fusion 56, 064001. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vršnak, B., Žic, T.: 2007, Transit times of interplanetary coronal mass ejections and the solar wind speed. Astron. Astrophys. 472, 937. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S.: 2003, Multiple magnetic clouds: several examples during March-April 2001. J. Geophys. Res. 108, 1370. DOI. ADS.

    Article  Google Scholar 

  • Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., Wang, J.X.: 2002, A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. J. Geophys. Res. 107, 1340. DOI. ADS.

    Article  Google Scholar 

  • Wang, Y., Zheng, H., Wang, S., Ye, P.: 2005, MHD simulation of the formation and propagation of multiple magnetic clouds in the heliosphere. Astron. Astrophys. 434, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res. 120, 1543. DOI. ADS.

    Article  Google Scholar 

  • Webb, D.F., Howard, R.A.: 1994, The solar cycle variation of coronal mass ejections and the solar wind mass flux. J. Geophys. Res. 99, 4201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xu, M., Shen, C., Wang, Y., Luo, B., Chi, Y.: 2019, Importance of shock compression in enhancing ICME’s geoeffectiveness. Astrophys. J. Lett. 884, L30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xue, X.H., Wang, Y., Ye, P.Z., Wang, S., Xiong, M.: 2005, Analysis on the interplanetary causes of the great magnetic storms in solar maximum (2000 2001). Planet. Space Sci. 53, 443. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yermolaev, Y.I., Lodkina, I.G., Dremukhina, L.A., Yermolaev, M.Y., Khokhlachev, A.A.: 2021, What solar-terrestrial link researchers should know about interplanetary drivers. Universe 7, 138. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, G., Burlaga, L.F.: 1988, Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases. J. Geophys. Res. 93, 2511. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst \(\leq-100\) nT) during 1996-2005. J. Geophys. Res. 112, A10102. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, J., Temmer, M., Gopalswamy, N., Malandraki, O., Nitta, N.V., Patsourakos, S., Shen, F., Vršnak, B., Wang, Y., Webb, D., Desai, M.I., Dissauer, K., Dresing, N., Dumbović, M., Feng, X., Heinemann, S.G., Laurenza, M., Lugaz, N., Zhuang, B.: 2021, Earth-affecting solar transients: a review of progresses in solar cycle 24. Prog. Earth Planet. Sci. 8, 56. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the use of data from the Wind and the Advanced Composition Explorer (ACE) satellites and World Data Center-Sunspot Index and Long-term Solar Observations (WDC-SILSO), Royal Observatory of Belgium, Brussels. We would like to thank the team of Solar-Terrestrial Exploration and Physics (STEP) at the University of Science and Technology of China for providing the ICME list and fitting models. This work is supported by grants from the NSFC (42188101, 42325405, 42130204, 41904151, 42074222) and the Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000).

Funding

This work was supported by grants from the NSFC (42188101, 42325405, 42130204, 41904151, 42074222) and the Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000).

Author information

Authors and Affiliations

Authors

Contributions

Z. Z., C. S., and Y. C. wrote the main manuscript text. D. M., J. L., M. X., Z. Z., C. W., and Y. W. contributed to discussions and offered revisions suggestions.

Corresponding authors

Correspondence to Chenglong Shen or Yutian Chi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Shen, C., Chi, Y. et al. Comparison of I-ICME and M-ICME Fittings and In Situ Observation Parameters for Solar Cycles 23 and 24 and Their Influence on Geoeffectiveness. Sol Phys 298, 138 (2023). https://doi.org/10.1007/s11207-023-02225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02225-3

Keywords

Navigation