Skip to main content
Log in

East–West Asymmetry in Interplanetary-Scintillation-Level Variation Associated with Solar-Wind Disturbances

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Interplanetary-scintillation (IPS) observations provide useful information on large-scale solar-wind disturbances, such as interplanetary coronal mass ejections (ICMEs) and stream interaction regions (SIRs), which impact the Earth and drive space weather. In the present study, we derived the \(G_{\mathrm{ave}}\)-index, which represents daily variations in the density-fluctuation level of the inner heliosphere, based on IPS observations at the Institute for Space-Earth Environmental Research of Nagoya University between 1997 and 2019, and investigated the response of \(G_{\mathrm{ave}}\) to ICME and SIR events. A clear difference was observed in the temporal profile of \(G_{\mathrm{ave}}\) obtained from the superposed-epoch analysis between ICME and SIR events. The \(G_{\mathrm{ave}}\)-values for the east and west sides of the sky plane for ICME events increased simultaneously and peaked at the ICME start time, which is consistent with the analysis of ICMEs directed toward the Earth. In contrast, the analysis of SIR events showed an asymmetric response between eastern and western \(G_{\mathrm{ave}}\), with a distinct increase in \(G_{\mathrm{ave}}\) observed on the west side after the SIR start time and higher \(G_{\mathrm{ave}}\)-values observed on the east side before the start time. These findings were explained by the effect of the spiral-shaped structure of the SIR. Significant positive correlations were found between \(G_{\mathrm{ave}}\) and solar-wind density and speed, which also showed east–west asymmetry. These phenomena were ascribed to the effect of SIR events, while the occurrence of peak correlations between \(G_{\mathrm{ave}}\) and density at zero delay time for Cycle 23 was ascribed to the effect of ICMEs. The difference in correlations between Cycles 23 and 24 was ascribed to the weakening of activity in Cycle 24. The occurrence of a correlation peak for a positive delay time suggests that eastern and western \(G_{\mathrm{ave}}\) data are useful for predicting the arrival of the solar wind with increased density and speed, respectively, although the correlation magnitudes were weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

IPS data are publicly available on the ISEE web site (stsw1.isee.nagoya-u.ac.jp/vlist). OMNI data are publicly available from the OMNIWeb service (omniweb.gsfc.nasa.gov/). The ICME and SIR lists were obtained from izw1.caltech.edu/ACE/ASC/DATA/level3/icmetable2.html and agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JA026396, respectively. The IPS-indices used in this study are available from the corresponding author upon reasonable request.

References

  • Ananthakrishnan, S., Coles, W.A., Kaufman, J.J.: 1980, Microturbulence in solar wind streams. J. Geophys. Res. 85, 6025. DOI. ADS.

    Article  ADS  Google Scholar 

  • Bird, M.K.: 2007, Coronal Faraday rotation of occulted radio signals. Astron. Astrophys. Trans. 26, 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2020, What magnetospheric and ionospheric researchers should know about the solar wind. J. Atmos. Solar-Terr. Phys. 204, 105271. DOI. ADS.

    Article  Google Scholar 

  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C.: 1982, An analysis of shock wave disturbances observed at 1 AU from 1971 through 1978. J. Geophys. Res. 87, 4365. DOI. ADS.

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002. J. Geophys. Res. Space Phys. 108, 1156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chashei, I.V., Tyul’bashev, S.A., Shishov, V.I., Subaev, I.A.: 2016, Interplanetary and ionosphere scintillation produced by ICME 20 December 2015. Space Weather 14, 682. DOI. ADS.

    Article  ADS  Google Scholar 

  • Coster, A.J., Erickson, P.J., Lanzerotti, L.J., Zhang, Y., Paxton, L.J. (eds.): 2021, Space Weather Effects and Applications, Geophys. Mono. Ser. 262, AGU, Washington. DOI. ADS.

    Book  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., Crawshaw, A., Conti, M., Demaine, P., Ellis, S., Gaidos, J.A., Googins, J., Granoff, M., Gustafson, A., Heirtzler, D., King, B., Knauss, U., Levasseur, J., Longworth, S., Singer, K., Turco, S., Vachon, P., Vosbury, M., Widholm, M., Blush, L.M., Karrer, R., Bochsler, P., Daoudi, H., Etter, A., Fischer, J., Jost, J., Opitz, A., Sigrist, M., Wurz, P., Klecker, B., Ertl, M., Seidenschwang, E., Wimmer-Schweingruber, R.F., Koeten, M., Thompson, B., Steinfeld, D.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gapper, G.R., Hewish, A., Purvis, A., Duffett-Smith, P.J.: 1982, Observing interplanetary disturbances from the ground. Nature 296, 633. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes Geophys. Mono. Ser. 58, AGU, Washington, 343. DOI. ADS.

    Chapter  Google Scholar 

  • Gosling, J.T.: 1996, Corotating and transient solar wind flows in three dimensions. Annu. Rev. Astron. Astrophys. 34, 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., McComas, D.J.: 1987, Field line draping about fast coronal mass ejecta: a source of strong out-of-the-ecliptic interplanetary magnetic fields. Geophys. Res. Lett. 14, 355. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grandin, M., Aikio, A.T., Kozlovsky, A.: 2019, Properties and geoeffectiveness of solar wind high-speed streams and stream interaction regions during solar cycles 23 and 24. J. Geophys. Res. Space Phys. 124, 3871. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hajra, R., Sunny, J.V.: 2022, Corotating interaction regions during solar cycle 24: a study on characteristics and geoeffectiveness. Solar Phys. 297, 30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hewish, A.: 1989, A user’s guide to scintillation. J. Atmos. Solar-Terr. Phys. 51, 743. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hewish, A., Scott, P.F., Wills, D.: 1964, Interplanetary scintillation of small diameter radio sources. Nature 203, 1214. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hewish, A., Tappin, S.J., Gapper, G.R.: 1985, Origin of strong interplanetary shocks. Nature 314, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima, M., Fujiki, K.: 2011, Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J. Atmos. Solar-Terr. Phys. 73, 1214. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jackson, B.V., Tokumaru, M., Iwai, K., Bracamontes, M.T., Buffington, A., Fujiki, K., Murakami, G., Heyner, D., Sanchez-Cano, B., Rojo, M., Aizawa, S., Andre, N., Barthe, A., Penou, E., Fedorov, A., Sauvaud, J.-A., Yokota, S., Saito, Y.: 2023, Forecasting heliospheric CME solar-wind parameters using the UCSD time-dependent tomography and ISEE interplanetary scintillation data: the 10 March 2022 CME. Solar Phys. 298, 74. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jensen, E.A., Hick, P.P., Bisi, M.M., Jackson, B.V., Clover, J., Mulligan, T.: 2010, Faraday rotation response to coronal mass ejection structure. Solar Phys. 265, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jian, L.K., Luhmann, J.G., Russell, C.T., Galvin, A.B.: 2019, Solar terrestrial relations observatory (STEREO) observations of stream interaction regions in 2007 – 2016: relationship with heliospheric current sheets, solar cycle variations, and dual observations. Solar Phys. 294, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kasper, J.C., Abiad, R., Austin, G., Balat-Pichelin, M., Bale, S.D., Belcher, J.W., Berg, P., Bergner, H., Berthomier, M., Bookbinder, J., Brodu, E., Caldwell, D., Case, A.W., Chandran, B.D.G., Cheimets, P., Cirtain, J.W., Cranmer, S.R., Curtis, D.W., Daigneau, P., Dalton, G., Dasgupta, B., DeTomaso, D., Diaz-Aguado, M., Djordjevic, B., Donaskowski, B., Effinger, M., Florinski, V., Fox, N., Freeman, M., Gallagher, D., Gary, S.P., Gauron, T., Gates, R., Goldstein, M., Golub, L., Gordon, D.A., Gurnee, R., Guth, G., Halekas, J., Hatch, K., Heerikuisen, J., Ho, G., Hu, Q., Johnson, G., Jordan, S.P., Korreck, K.E., Larson, D., Lazarus, A.J., Li, G., Livi, R., Ludlam, M., Maksimovic, M., McFadden, J.P., Marchant, W., Maruca, B.A., McComas, D.J., Messina, L., Mercer, T., Park, S., Peddie, A.M., Pogorelov, N., Reinhart, M.J., Richardson, J.D., Robinson, M., Rosen, I., Skoug, R.M., Slagle, A., Steinberg, J.T., Stevens, M.L., Szabo, A., Taylor, E.R., Tiu, C., Turin, P., Velli, M., Webb, G., Whittlesey, P., Wright, K., Wu, S.T., Zank, G.: 2016, Solar wind electrons alphas and protons (SWEAP) investigation: design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Sci. Rev. 204, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kataoka, R., Miyoshi, Y.: 2006, Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Space Weather 4, 09004. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Coronal mass ejections and their sheath regions in interplanetary space. Liv. Rev. Solar Phys. 14, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kojima, M., Kakinuma, T.: 1990, Solar cycle dependence of global distribution of solar wind speed. Space Sci. Rev. 53, 173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kojima, M., Tokumaru, M., Fujiki, K., Hayashi, K., Jackson, B.V.: 2007, IPS tomographic observations of 3D solar wind structure. Astron. Astrophys. Trans. 26, 467. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kooi, J.E., Wexler, D.B., Jensen, E.A., Wood, B.E.: 2022, Multipoint radio probe of the solar corona: the trans-coronal radio array fleet (T-CRAF). Front. Astron. Space Sci. 9, 1026422. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lopez, R.E., Freeman, J.W.: 1986, Solar wind proton temperature-velocity relationship. J. Geophys. Res. 91, 1701. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lucek, E.A., Clark, T.D.G., Moore, V.: 1996, The use of various interplanetary scintillation indices within geomagnetic forecasts. Ann. Geophys. 14, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Winslow, R.M., Al-Haddad, N., Galvin, A.B., Nieves-Chinchilla, T., Lee, C.O., Janvier, M.: 2018, On the spatial coherence of magnetic ejecta: measurements of coronal mass ejections by multiple spacecraft longitudinally separated by 0.01 au. Astrophys. J. Lett. 864, L7. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2006, Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Phys. 235, 345. DOI. ADS.

    Article  ADS  Google Scholar 

  • Manoharan, P.K.: 2010, Ooty interplanetary scintillation - remote-sensing observations and analysis of coronal mass ejections in the heliosphere. Solar Phys. 265, 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, J.E.C., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55. DOI. ADS.

    Article  ADS  Google Scholar 

  • Owen, C.J., Bruno, R., Livi, S., Louarn, P., Al Janabi, K., Allegrini, F., Amoros, C., Baruah, R., Barthe, A., Berthomier, M., Bordon, S., Brockley-Blatt, C., Brysbaert, C., Capuano, G., Collier, M., DeMarco, R., Fedorov, A., Ford, J., Fortunato, V., Fratter, I., Galvin, A.B., Hancock, B., Heirtzler, D., Kataria, D., Kistler, L., Lepri, S.T., Lewis, G., Loeffler, C., Marty, W., Mathon, R., Mayall, A., Mele, G., Ogasawara, K., Orlandi, M., Pacros, A., Penou, E., Persyn, S., Petiot, M., Phillips, M., Přech, L., Raines, J.M., Reden, M., Rouillard, A.P., Rousseau, A., Rubiella, J., Seran, H., Spencer, A., Thomas, J.W., Trevino, J., Verscharen, D., Wurz, P., Alapide, A., Amoruso, L., André, N., Anekallu, C., Arciuli, V., Arnett, K.L., Ascolese, R., Bancroft, C., Bland, P., Brysch, M., Calvanese, R., Castronuovo, M., Čermák, I., Chornay, D., Clemens, S., Coker, J., Collinson, G., D’Amicis, R., Dandouras, I., Darnley, R., Davies, D., Davison, G., De Los Santos, A., Devoto, P., Dirks, G., Edlund, E., Fazakerley, A., Ferris, M., Frost, C., Fruit, G., Garat, C., Génot, V., Gibson, W., Gilbert, J.A., de Giosa, V., Gradone, S., Hailey, M., Horbury, T.S., Hunt, T., Jacquey, C., Johnson, M., Lavraud, B., Lawrenson, A., Leblanc, F., Lockhart, W., Maksimovic, M., Malpus, A., Marcucci, F., Mazelle, C., Monti, F., Myers, S., Nguyen, T., Rodriguez-Pacheco, J., Phillips, I., Popecki, M., Rees, K., Rogacki, S.A., Ruane, K., Rust, D., Salatti, M., Sauvaud, J.A., Stakhiv, M.O., Stange, J., Stubbs, T., Taylor, T., Techer, J.-D., Terrier, G., Thibodeaux, R., Urdiales, C., Varsani, A., Walsh, A.P., Watson, G., Wheeler, P., Willis, G., Wimmer-Schweingruber, R.F., Winter, B., Yardley, J., Zouganelis, I.: 2020, The solar orbiter solar wind analyser (SWA) suite. Astron. Astrophys. 642, A16. DOI. ADS.

    Article  Google Scholar 

  • Richardson, I.G.: 2018, Solar wind stream interaction regions throughout the heliosphere. Liv. Rev. Solar Phys. 15, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Berdichevsky, D., Desch, M.D., Farrugia, C.J.: 2000, Solar-cycle variation of low density solar wind during more than three solar cycles. Geophys. Res. Lett. 27, 3761. DOI. ADS.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., Kataoka, R., Steinberg, J.T., Thompson, B.J., Wu, C.-C., Zhukov, A.N.: 2006, Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions. J. Geophys. Res. Space Phys. 111, A07S09. DOI. ADS.

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2020, Comparison of radioastronomical estimates of the coronal and solar wind magnetic field with measurements from Parker solar probe. Res. Notes Am. Astron. Soc. 4, 147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tokumaru, M.: 2013, Three-dimensional exploration of the solar wind using observations of interplanetary scintillation. Proc. Japan Acad. Ser. B 89, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Fujiki, K., Iwai, K.: 2023, Interplanetary scintillation observations of solar-wind disturbances during cycles 23 and 24. Solar Phys. 298, 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Yokobe, A.: 2000, Three-dimensional propagation of interplanetary disturbances detected with radio scintillation measurements at 327 MHz. J. Geophys. Res. 105, 10435. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., Yokobe, A.: 2003, Toroidal-shaped interplanetary disturbance associated with the halo coronal mass ejection event on 14 July 2000. J. Geophys. Res. Space Phys. 108, 1220. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., Jackson, B.V.: 2007, The source and propagation of the interplanetary disturbance associated with the full-halo coronal mass ejection on 28 October 2003. J. Geophys. Res. Space Phys. 112, A05106. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Maruyama, Y., Ito, H., Iju, T.: 2011, A newly developed UHF radiotelescope for interplanetary scintillation observations: solar wind imaging facility. Radio Sci. 46, RS0F02. DOI. ADS.

    Article  Google Scholar 

  • Tokumaru, M., Fujiki, K., Iwai, K., Tyul’bashev, S., Chashei, I.: 2019, Coordinated interplanetary scintillation observations in Japan and Russia for coronal mass ejection events in early September 2017. Solar Phys. 294, 87. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Hajra, R.: 2020, The physics of space weather/solar-terrestrial physics (STP): what we know now and what the current and future challenges are. Nonlinear Process. Geophys. 27, 75. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

IPS observations were conducted under the solar-wind program at the Institute for Space-Earth Environmental Research (ISEE) of Nagoya University. We acknowledge the use of the OMNIWeb service and OMNI data of the NASA/GSFC Space Physics Data Facility.

Funding

This research was partially supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research (C) (21K03640).

Author information

Authors and Affiliations

Authors

Contributions

M. Tokumaru wrote the main manuscript text and prepared all figures. M. Nagai made the analysis under the lead of M. Tokumaru. K. Fujiki and K. Iwai discussed the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Munetoshi Tokumaru.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokumaru, M., Nagai, M., Fujiki, K. et al. East–West Asymmetry in Interplanetary-Scintillation-Level Variation Associated with Solar-Wind Disturbances. Sol Phys 298, 127 (2023). https://doi.org/10.1007/s11207-023-02220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02220-8

Keywords

Navigation