Skip to main content
Log in

Plasma Heating in an Erupting Prominence Detected from Microwave Observations with the Siberian Radioheliograph

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A major eruptive flare occurred on 12 January 2022 in the northeast not far behind the solar limb (N32 E116). The eruption produced a fast coronal mass ejection (CME). The rising ejecta was observed by the telescopes in the extreme ultraviolet and by the multi-frequency Siberian Radioheliograph (SRH) in the 5.8 – 11.8 GHz range. We show how the slope of the decrease in the brightness temperature of the rising ejecta, measured from the microwave SRH images, is related to the heat inflow or outflow in its body during rapid expansion with high acceleration and under the assumption that the plasma ionization state changes insignificantly within the measurement interval. We found that the low-temperature plasma component in the erupting prominence underwent heating. Most likely, this was due to the predominance of ohmic heating because i) the polytropic index of expanding plasma expected in this case was closest to the experimentally measured one, and ii) the ohmic dissipation due to electron-proton collisions loses its efficiency during expansion much slower than the other mechanisms of heating or cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study were derived from the following public domain resources:

Virtual Solar Observatory sdac.virtualsolar.org/

CDAW Data Center cdaw.gsfc.nasa.gov/

SOHO LASCO CME Catalog cdaw.gsfc.nasa.gov/CME_list/

Raw and preliminary SRH data computed automatically in real time are accessible via ftp://ftp.rao.istp.ac.ru/SRH/. The test-mode SRH data used in this study are available from the corresponding author on reasonable request.

References

  • Akmal, A., Raymond, J.C., Vourlidas, A., Thompson, B., Ciaravella, A., Ko, Y.-K., Uzzo, M., Wu, R.: 2001, SOHO observations of a coronal mass ejection. Astrophys. J. 553, 922. DOI. ADS.

    Article  ADS  Google Scholar 

  • Altyntsev, A., Lesovoi, S., Globa, M., Gubin, A., Kochanov, A., Grechnev, V., Ivanov, E., Kobets, V., Meshalkina, N., Muratov, A., Prosovetsky, D., Myshyakov, I., Uralov, A., Fedotova, A.: 2020, Multiwave Siberian Radioheliograph. Solar-Terr. Phys. 6, 30. DOI. ADS.

    Article  Google Scholar 

  • Braginskii, S.I.: 1965, Transport processes in a plasma. Rev. Plasma Phys. 1, 205. ADS.

    ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carlsson, M., Stein, R.F.: 2002, Dynamic hydrogen ionization. Astrophys. J. 572, 626. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chae, J.: 2021, Ionization of hydrogen in the solar atmosphere. J. Astron. Space Sci. 38, 83. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chertok, I.M., Belov, A.V., Grechnev, V.V.: 2015, A simple way to estimate the soft X-ray class of far-side solar flares observed with STEREO/EUVI. Solar Phys. 290, 1947. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dulk, G.A.: 1985, Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169. DOI. ADS.

    Article  ADS  Google Scholar 

  • Filippov, B., Koutchmy, S.: 2002, About the prominence heating mechanisms during its eruptive phase. Solar Phys. 208, 283. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ginzburg, V.L.: 1970, The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford. ADS.

    Google Scholar 

  • Glesener, L., Krucker, S., Bain, H.M., Lin, R.P.: 2013, Observation of heating by flare-accelerated electrons in a solar coronal mass ejection. Astrophys. J. Lett. 779, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan 58, 69. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys. 291, 1173. DOI. ADS.

    Article  ADS  Google Scholar 

  • Grechnev, V.V., Kochanov, A.A., Uralov, A.M., Slemzin, V.A., Rodkin, D.G., Goryaev, F.F., Kiselev, V.I., Myshyakov, I.I.: 2019, Development of a fast CME and properties of a related interplanetary transient. Solar Phys. 294, 139. DOI. ADS.

    Article  ADS  Google Scholar 

  • Heinzel, P., Berlicki, A., Bárta, M., Karlický, M., Rudawy, P.: 2015, On the visibility of prominence fine structures at radio millimeter wavelengths. Solar Phys. 290, 1981. DOI. ADS.

    Article  ADS  Google Scholar 

  • Heinzel, P., Bárta, M., Gunár, S., Labrosse, N., Vial, J.-C.: 2022, Prominence observations with ALMA. Front. Astron. Space Sci. 9, 983707. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Huba, J.D.: 2004, NRL: Plasma formulary. Technical report, NRL/PU/6790–04–477, Naval Research Laboratory, Washington, DC.

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kucera, T.A., Landi, E.: 2008, Analysis of EUV, UV, and H-alpha emission from two very different prominences. In: AGU Spring Meeting Abstracts 2008, SP43B. ADS.

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: 1987, Fluid Mechanics, Pergamon Press, Oxford.

    Google Scholar 

  • Lantos, P., Raoult, A.: 1980, Prominences at centimetric and millimetric wavelengths. II. Radio diagnostic of the prominences. Solar Phys. 66, 275. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lee, J.-Y., Raymond, J.C., Reeves, K.K., Moon, Y.-J., Kim, K.-S.: 2017, Heating of an erupting prominence associated with a solar coronal mass ejection on 2012 January 27. Astrophys. J. 844, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Loukitcheva, M., Solanki, S.K., Carlsson, M., Stein, R.F.: 2004, Millimeter observations and chromospheric dynamics. Astron. Astrophys. 419, 747. DOI. ADS.

    Article  ADS  Google Scholar 

  • Low, B.C.: 1982, Self-similar magnetohydrodynamics. I - The \(\gamma = 4/3\) polytrope and the coronal transient. Astrophys. J. 254, 796. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rao, A.P., Kundu, M.R.: 1977, A study of filament transition sheath from radio observations. Solar Phys. 55, 161. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rivera, Y.J., Landi, E., Lepri, S.T., Gilbert, J.A.: 2019, Empirical modeling of CME evolution constrained to ACE/SWICS charge state distributions. Astrophys. J. 874, 164. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rodger, A., Labrosse, N.: 2017, Solar prominence modelling and plasma diagnostics at ALMA wavelengths. Solar Phys. 292, 130. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schure, K.M., Kosenko, D., Kaastra, J.S., Keppens, R., Vink, J.: 2009, A new radiative cooling curve based on an up-to-date plasma emission code. Astron. Astrophys. 508, 751. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sedov, L.I.: 1977, Similarity Methods and Dimensional Analysis in Mechanics, 8th edn. Moscow Izdatel Nauka. ADS.

    Google Scholar 

  • Uralov, A.M., Grechnev, V.V., Hudson, H.S.: 2005, Initial localization and kinematic characteristics of the structural components of a coronal mass ejection. J. Geophys. Res. Space Phys. 110, A05104. DOI. ADS.

    Article  ADS  Google Scholar 

  • White, S.M., Loukitcheva, M., Solanki, S.K.: 2006, High-resolution millimeter-interferometer observations of the solar chromosphere. Astron. Astrophys. 456, 697. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. Space Phys. 109, A07105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zandanov, V.G., Lesovoi, S.V.: 1999, Radio observations of filaments at the SSRT. In: Bastian, T.S., Gopalswamy, N., Shibasaki, K. (eds.) Proc. Nobeyama Symp., 37. ADS.

    Google Scholar 

  • Zheleznyakov, V.V.: 1970, Radio Emission of the Sun and Planets, Pergamon Press, Oxford. ADS.

    Google Scholar 

  • Zheleznyakov, V.V.: 1996, Radiation in Astrophysical Plasmas, Astrophysics and Space Science Library 204, Springer, Dordrecht. DOI. ADS.

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues from the Radio Astrophysical Department and the Radio Astrophysical Observatory in Badary. We thank A.A. Kochanov for discussions and assistance. We thank the anonymous reviewer for valuable comments that helped improve the original manuscript. The SRH data were obtained using the Unique Research Facility Siberian Solar Radio Telescope (ckp-rf.ru/catalog/usu/73606/).

We are grateful to the NASA/SDO and the AIA science teams; the NASA’s STEREO/SECCHI science and instrument teams; and the team operating LASCO on SOHO. SOHO is a project of international cooperation between ESA and NASA. We appreciate the team maintaining the CME Catalog at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

A.M. Uralov proposed the basic method, interpreted the results, and wrote Sections 1, 3, and 4. S.V. Lesovoi and M.V. Globa acquired, calibrated, and preliminarily analyzed the SRH data that were used in this study. V.V. Grechnev made measurements, prepared figures, and wrote Sections 2 and 5. All authors discussed intermediate results and further actions at all stages of the study and reviewed the manuscript.

Corresponding author

Correspondence to V. V. Grechnev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(MPG 2.9 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uralov, A.M., Grechnev, V.V., Lesovoi, S.V. et al. Plasma Heating in an Erupting Prominence Detected from Microwave Observations with the Siberian Radioheliograph. Sol Phys 298, 117 (2023). https://doi.org/10.1007/s11207-023-02210-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02210-w

Keywords

Navigation