Skip to main content
Log in

On the Differences in the Ambient Solar Wind Speed Forecasting Caused by Using Synoptic Maps from Different Observatories

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We consider the problem of forecasting the solar wind speed using not only well-known magnetic field data sets, such as the Wilcox Solar Observatory (WSO) and the Global Oscillations Network Group (GONG) but others, such as the Infrared Magnetograph (IRmag) at the National Astronomical Observatory of Japan and the Solar Telescope for Operative Prediction (STOP) in Russia. We use these observations to study Carrington rotation (CR) 2164 (21 May – 17 June 2015). Our initial calculations are based on the Wang-Sheeley-Arge (WSA) model and include determining the coronal magnetic field using the potential field source surface (PFSS) approximation. The speed of the ambient solar wind near the Sun is calculated using an empirical equation that considers the flux tube expansion factor (FTEF) and the distance of the flux tube footpoint from the coronal hole boundary (DCHB) at the photospheric level. The solar wind bulk speed at the Earth’s orbit is calculated using the Heliospheric Upwind eXtrapolation (HUX) model. It is shown that the discrepancies in the speed values from four different data sets could reach ≈ 200 km s−1, which is significant. We compare our predictions with in situ data from the Advance Composition Explorer (ACE) and demonstrate that a better coincidence between calculated and empirical results, accounting for the magnetic field strength in coronal holes, can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available in the paper. The work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory.

We acknowledge data of GONG (http://jsoc.stanford.edu; http://gong.nso.edu) and Wilcox Solar Observatory (courtesy of J.T. Hoeksema) (http://wso.stanford.edu). The authors gratefully scknowledge M.L. De Rosa for the PFSS code available at SSW (Solar Software) (see https://www.lmsal.com/~derosa/pfsspack/). The ACE solar wind speed data are taken from its web site (https://izw1.caltech.edu/ACE/ASC/level2/lvl2DATA_SWICS_2.0.html).

References

  • Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten. Amer. Inst. Phys. CS. 679, 190. DOI. ADS.

    Chapter  Google Scholar 

  • Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal source of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M.L.: 2017, Possibilities and problems of solar magnetic field observations for space weather forecast. J. Solar-Terr. Phys. 3(1), 26. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2009, Spectro-polarimetric observations of solar magnetic fields and SOHO/MDI calibration issue. Solar Phys. 260, 261. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M.L., Balthasar, H.: 2012, On multi-line spectro-polarimetric diagnostics of the quiet sun’s magnetic fields. Statistics, inversion results, and effects on SOHO/MDI magnetogram calibration. Solar Phys. 276, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M., Hanaoka, Y., Sakurai, T.: 2019, Large-scale solar magnetic fields from observations in the visible and infrared spectral lines and some space weather issues. In: Gandorfer, A.M., Lagg, A., RaabProc, K. (eds.) 9th Solar Polarization Workshop. DOI. ADS.

    Chapter  Google Scholar 

  • Demidov, M.L., Zhigalov, V.V., Peshcherov, V.S., Grigoryev, V.M.: 2002, An investigations of the Sun-as-a-star magnetic field through spectropolarimetric measurements. Solar Phys. 209, 217. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M.L., Golubeva, E.M., Balthasar, H., Staude, J., Grigoryev, V.M.: 2008, Comparison of solar magnetic fields measured at different observatories: peculiar strenght ratio distributions across the disk. Solar Phys. 250, 279. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M.L., Stenflo, J.O., Bianda, M., Ramelli, R.: 2014, Conversion of the 6302/6301 Stokes V line ratio to the 5250/5247 ratio for diagnostics of quite-sun magnetic fields. In: Nagendra, K.N., Stenflo, J.O., Qu, Z.Q., Sampoorna, M. (eds.) Proc. 7th Solar Polarization Workshop, Astron. Soc. Pacific C.S. 489, 21. ADS.

    Google Scholar 

  • Demidov, M.L., Wang, X.F., Wang, D.G., Deng, Y.Y.: 2018, On the measurements of full-disk longitudinal magnetograms at Huairou Solar Observing Station. Solar Phys. 293(10), 146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Demidov, M.L., Hanaoka, Y., Sakurai, T., Wang, X.F.: 2020, Large-scale solar magnetic fields observed with the infrared spectro-polarimeter IRmag at the National Astronomical Observatory of Japan: comparison of measurements made in different spectral lines and observatories. Solar Phys. 295(4), 54. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gonzi, S., Weinzier, M., Bocquet, F.-X., Bisi, M.M., Jackson, B.V., Yeates, A.R., Jackson, D.R., Henney, C.J., Arge, C.N.: 2021, Impact of inner heliospheric boundary conditions on solar wind predictions at Earth. Space Weather 19(1), e02499. DOI. ADS.

    Article  Google Scholar 

  • Hayashi, K., Yang, S.B., Deng, Y.Y.: 2016, Comparison of potential fields solutions for Carrington rotation 2144. J. Geophys. Res. 121, 1046. DOI. ADS.

    Article  Google Scholar 

  • Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295. DOI. ADS.

    Article  ADS  Google Scholar 

  • Odstrcil, D., Mays, M.L., Hess, P., Jones, S.I., Henney, C.J., Arge, C.N.: 2020, Operational modeling of heliospheric space weather for the Parker solar probe. Astrophys. J. Suppl. Ser. 246(2), 73. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pietarila, A., Bertello, L., Harvey, J.W., Pevtsov, A.A.: 2013, Comparison of ground-based and space-based longitudinal magnetograms. Solar Phys. 282, 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reiss, M.A., MacNeice, P.J., Mays, L.M., Arge, C.N., Möstl, C., Nikolic, L., Amerstorfer, T.: 2019, Forecasting the ambient solar wind with numerical models. I. On the implementation of an operational framework. Astrophys. J. Suppl. Ser. 240(2), 35. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reiss, M.A., MacNeice, P.J., Muglach, K., Arge, C.N., Möstl, C., Riley, P., Hinterreiter, J., Bailey, R., Weiss, A., Owens, M.J., Amerstorfer, T., Amerstorfer, U.: 2020, Forecasting the ambient solar wind with numerical models. II. An adaptive prediction system for specifying solar wind speed near the Sun. Astrophys. J. 891(2), 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2013a, Ensemble modeling of the ambient solar wind. AIP Conf. Proc. 1539, 259. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Mikić, Z.: 2013b, On the applicatin of essemble modelling techniques to improve ambient solar wind models. J. Geophys. Res. 118(2), 600. DOI. ADS.

    Article  Google Scholar 

  • Riley, P., Lionello, R.: 2011, Mapping solar wind streams from the Sun to 1 AU. A comparison of techiques. Solar Phys. 270(2), 575. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikic, Z.: 2012, Corotating interaction regions during the recent solar minimum: the power and limitations of global MHD modeling. J. Atmos. Solar-Terr. Phys. 83, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289(3), 769. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sakurai, T., Hanaoka, Y., Arai, T., Hagino, M., Kawate, T., Kitagawa, N., Kobiki, T., Miyashita, M., Morita, S., Otsuji, K., Shidora, K., Suzuki, I., Yali, K., Yamasaki, T., Fukuda, T., Noguchi, M., Takeyama, N., Kanai, Y., Yamamuro, T.: 2018, Infrared spectro-polarimeter on the solar flare telescope at NAOJ/Mitaka. Publ. Astron. Soc. Japan 70(4), 58. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schatten, K.H.: 1971, Current sheet magnetic model for the solar corona. Cosm. Electrodyn. 2, 232. ADS.

    ADS  Google Scholar 

  • Stenflo, J.O., Demidov, M.L., Bianda, M., Ramelli, R.: 2013, Calibration of the 6302/6301 Stokes \(V\) line ratio in terms of the 5250/5247 ratio. Astron. Astrophys. 556, A113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Taylor, K.E.: 2001, Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183. DOI.

    Article  ADS  Google Scholar 

  • Wallace, S., Arge, C.N., Viall, N., Pihlström, Y.: 2020, On the relationship between magnetic expansion factor and observed speed of the solar wind from coronal pseudostreamers. Astrophys. J. 898(1), 78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Ko, Y.-K.: 2019, Observations of slow solar wind from equatorial coronal holes. Astrophys. J. 880(2), 146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, D., Zhang, M., Li, H., Zhang, H.Q.: 2009, A cross-comparison of cotemporal magnetograms obtaained with MDI/SOHO and SP/Hinode. Solar Phys. 260(1), 233. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhang, H.Q., Wang, D.G., Deng, Y.Y., Hu, K.L., Su, J.T., Lin, J.B., Lin, G.H., Yang, S.M., Mao, W.J., Wang, Y.N., Hu, Q.Q., Xue, J.S., Lu, H.T., Ni, H.K., Chen, H.L., Zhou, X.J., Zhu, Q.S., Yuan, L.J., Zhu, Y.: 2007, Solar magnetism and the activity telescope at HSOS. Chin. J. Astron. Astrophys. 7, 281. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the anonymous referee for useful comments and suggestions.

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation.

This study has been partly financially supported (MLD) by the CAS President’s International Fellowship Initiative (PIFI) (Project N 2017VMA0009).

Author information

Authors and Affiliations

Authors

Contributions

MLD wrote the main manuscript text and prepared Figures 1-12. YH provided IRmag synoptic map and took part in the preparation of the text. XFW prepared for processing ACE data and took part in the preparation Figures 12. PNK prepared for processing the GONG synoptic map. All authors reviewed the manuscript.

Corresponding author

Correspondence to M. L. Demidov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, M.L., Hanaoka, Y., Wang, X.F. et al. On the Differences in the Ambient Solar Wind Speed Forecasting Caused by Using Synoptic Maps from Different Observatories. Sol Phys 298, 120 (2023). https://doi.org/10.1007/s11207-023-02206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02206-6

Keywords

Navigation